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27:2 R. D. CARR ET AL.

Abstract. For a graph (V, E), existing compact linear formulations for the minimum cut problem
require �(|V ||E |) variables and constraints and can be interpreted as a composition of |V | − 1
polyhedra for minimum s-t cuts in much the same way as early approaches to finding globally
minimum cuts relied on |V |−1 calls to a minimum s-t cut algorithm. We present the first formulation
to beat this bound, one that uses O(|V |2) variables and O(|V |3) constraints. An immediate consequence
of our result is a compact linear relaxation with O(|V |2) constraints and O(|V |3) variables for enforcing
global connectivity constraints. This relaxation is as strong as standard cut-based relaxations and
has applications in solving traveling salesman problems by integer programming as well as finding
approximate solutions for survivable network design problems using Jain’s iterative rounding method.
Another application is a polynomial-time verifiable certificate of size n for for the NP-complete
problem of l1-embeddability of a rational metric on an n-set (as opposed to a certificate of size n2

known previously).

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization—Linear program-
ming; integer programming; F.1.1 [Computation by Abstract Devices]: Models of Computation;
F.1.3 [Computation by Abstract Devices]: Complexity Measures and Classes; G.2.2 [Discrete
Mathematics]: Graph Theory—Network problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Linear programming formulation complexity, minimum cut prob-
lem
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1. Introduction

Mathematical programming has enjoyed a burgeoning presence in theoretical com-
puter science, both as a framework for developing algorithms and, increasingly, as
a bona fide model of computation whose limits are expressed in terms of sizes of
formulations and integrality gaps of formulations [Arora et al. 2002; Alekhnovich
et al. 2005; Khot and Vishnoi 2005].

The impact of mathematical programming is also evident in algorithms for com-
binatorial optimization problems. In fact, some of the most celebrated algorithmic
results of the last decade have been achieved by the reduction of the problem in
question to a linear or semidefinite programming model [Goemans and Williamson
1995; Jain 2001]. In many cases, the algorithms are directly based on such mathe-
matical programming models and no combinatorial algorithms are known for such
problems. Even those algorithms that do not rely directly on a mathematical pro-
gram solver often have designs that were explicitly governed by insights gained
from a mathematical programming model (for example, primal-dual algorithms;
see Vazirani [2001]). It is not difficult to see why linear formulations are an appeal-
ing model of computation: Both optimization and decision problems fit naturally
into the framework, and both theoretically tractable and efficient practical algo-
rithms exist for solving linear programs.

Smaller formulations for linear relaxations of NP-hard problems are important in
the design of efficient approximation algorithms. Perhaps more surprising is the fact
that smaller formulations for problems already known to be in P can have an impact
on both the exact and approximation solution of NP-hard problems. For instance,
state-of-the-art approaches to exactly solving large-scale instances of many NP-
hard problems rely on integer programming approaches that require the repeated
solution of integer programs representing problems in P [Barnhart et al. 1998].
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Polynomial-sized exact linear formulations for these problems can be used in place
of the integer programs to potentially improve performance [Barnhart et al. 1998].
In the case of the traveling salesman problem [Applegate et al. 1998], one of the most
famous combinatorial optimization problems, minimum cut is one such subroutine,
and smaller exact formulations for it are likely to yield faster exact algorithms for
large instances traveling salesman problem.

From a theoretical point of view, linear formulation complexity offers a different
perspective than that offered by other prominent models of computation. For in-
stance, even though, algorithmically, spanning tree is considered a relatively easy
to solve member of P, the smallest known linear formulation requires �(|V ||E |)
constraints and variables [Wong 1984; Martin 1991; Tamir 1991]. In fact, before
the results we present in this article, the same was true of minimum cut [Conforti
et al. 2000; Tamir 1994]. The situation of the matching problem is a most peculiar
one, since this problem can be solved in polynomial time, yet has resisted all at-
tempts to find polynomial-size linear formulations. Another highly interesting fact
about this problem is that the matching problem can be solved in polynomial time
by solving an exponential-size linear program. The foundation of this result is the
equivalence between separation and optimization problems in linear programming
(see also Section 2).

Some of these results can be placed in a better context by observing that Turing
machine complexity is perhaps not the ideal model for comparison since the size of
a linear program seems to intuitively depend upon an efficient encoding of feasible
solutions. Yannakakis observed this and forged a connection between linear formu-
lation complexity and nondeterministic communication complexity [Yannakakis
1991]. He also showed that any symmetric linear programming formulation of
matching or of the traveling salesman problem must have exponential size. These
results represent some of the earliest work on linear formulation complexity.

The results of Yannakakis are not unconditional; they give lower bounds only
for linear programming formulations that satisfy a symmetry condition. However,
Yannakakis says “it is not clear what can be gained by treating one node differently
than another.” Our result can be seen as an example where additional asymmetry
seems to allow a more compact linear formulation (however, we do not have a proof
of this, such as would follow from a tight lower bound on the size of a symmetric
formulation).

Martin [1991] studied the relationship between optimization and separation prob-
lems (see also Section 2), and observed that his results imply a linear formulation
for the minimum spanning tree problem with �(|V |3) variables and �(|V |3) con-
straints. This is no more compact than the standard relaxation [Magnanti and Wolsey
1995], and Martin asked whether there exists a linear formulation with O(|V |2) vari-
ables or constraints. While this remains an open problem, in this article we answer
the analogous question positively for the related minimum cut problem.

1.1. MINIMUM CUT. The connectivity of a weighted undirected graph (V, E) is
the minimum total capacity of a set of edges whose removal disconnects the graph.
The problem of finding the connectivity of a (weighted) graph is called the (global)
minimum cut, or min cut, problem.

Traditional linear programming formulations for the minimum cut prob-
lem [Tamir 1994] require �(|V ||E |) variables and constraints and can be interepted
as a composition of (|V | − 1) minimum s-t cut polyhedra (see Tamir [1994] and
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Conforti et al. [2000, Proposition 2]) in much the same way as the early algorithms
for globally minimum cuts rely on |V | − 1 calls to a minimum s-t cut algorithm.
Better algorithms have been found, for example, the O(|V ||E |)-time algorithm by
Nagamochi and Ibaraki [1992], simplified by Stoer and Wagner [1997], and the
almost linear randomized algorithm by Karger [2000], but no linear programming
formulation has been known that uses o(|V ||E |) variables or constraints.

1.2. OUR RESULTS. We show that the global minimum cut problem has linear
formulation complexity o(|V ||E |). In particular, we show this problem can indeed
be modeled in a way that takes advantage of global connectivity, as opposed to
simply composing |V | − 1 (s-t)-cut formulations.

Our formulation requires only O(|V |2) variables and O(|V |3) constraints, thus
reducing the number of variables by a factor of |V | on dense graphs. We give two
proofs of our result. The first is based on the powerful graph-theoretic notion of
splitting-off [Frank 1992; Lovász 1979] and uses induction on the size of a minimal
counterexample. Our formulation can be seen (in a dual sense) as a sequence of
splitting-off operations that preserve (local) connectivity while reducing the graph.
The second proof is somewhat longer, but it is both elementary and constructive
in that it shows how to efficiently reconstruct an integral solution from any op-
timal fractional solution. This allows us to recover a convex combination of cuts
dominated by any given feasible fractional solution to the linear program.

Also of note is that using our formulation, it is possible to obtain an O(|V |2) ×
O(|V |3) relaxation for the k-edge-connected spanning subgraph problem, which is
that of finding a minimum cost k-edge-connected subgragph in a weighted graph.
The relaxation obtained is equivalent in strength to the standard cut-based relaxation
but has implications for algorithms that explicitly rely on solving LP relaxations,
such as Jain’s iterative rounding procedure [Jain 2001].

Another consequence of our work is a smaller polynomially verifiable certificate
for �1-embeddability of metrics, consisting of �(n) instead of �(n2) rational values
(see Section 5). Practical applications of our work are mostly to solving large-scale
integer programs, where parts of the formulation may impose global connectivity
constraints, and our formulation will help reduce the size of the instance.

1.3. PRELIMINARIES. We use mostly standard notation that is consistent with
Schrijver’s text [Schrijver 2003]. We let Vn = {1, . . . , n}, and by En we mean the
edge set {{i, j} | i ∈ Vn, j ∈ Vn}. We abbreviate {i, j} as i j , or equivalently j i ;
when an edge i j is the index of a component of a vector, we write i, j instead. For
a graph G = (V, E), if we are a given a set S ⊆ V , the we define the edge sets
δ(S) = {i, j ∈ E | |{i, j} ∩ S| = 1} and E(S) = {i, j ∈ E | |{i, j} ∩ S| = 2}; we
abbreviate δ({v}) as δ(v). The graph G − v, for some v ∈ V , is obtained from G
by deleting v and all edges in δ(v). We let con(G, c) refer to the value of a minimal
cut in G with respect to the cost vector c; if the value of c is clear from context we
simply use con(G).

Given sets S and I , we use SI to refer to an |I |-dimensional vector space in which
the components of each vector in SI are in a correspondence with the elements of
I . For a vector x ∈ SI , and a set J ⊆ I , by x(J ) we mean

∑
j∈J x j ; the vector

x |J ∈ S J is obtained from the vector x ∈ SI by dropping all components in I \ J .
We refer the reader to Yannakakis [1991] for a more detailed discussion of linear

formulations of optimization problems; here, by an M × N formulation we mean
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a linear program with M constraints, excluding nonnegativity constraints, and N
variables. By a compact formulation we mean one in which M and N are polynomial
in the representation size of the optimization problem instance.

2. Compact Relaxations for STSP and Network Design Relaxations

The motivation for our compact minimum cut formulation has roots in compact
linear relaxations for the Symmetric Traveling Salesman Problem (STSP), which,
given a complete graph G = (V = Vn, E = En) with edge costs c, consists
in finding a minimum cost Hamilton cycle in G. The classic subtour elimination
polytope was defined by the linear relaxation for STSP given by Dantzig et al.
[1954].

Minimize
∑
i j∈E

ci, j xi, j SEP(n)

subject to
x(δ(v)) = 2 ∀v ∈ V (1)
x(δ(S)) ≥ 2 ∀S ⊆ V : ∅ 	= S 	= V (2)

1 ≥ xi, j ≥ 0 ∀i j ∈ E . (3)

For a more thorough exposition consult, for instance, Schrijver [2003, Chapter 58].
The LP SEP(n) has an exponential number of constraints (2), however an optimal
solution to can be obtained in polynomial time via the ellipsoid algorithm since
the separation problem for Eq. (2) is precisely minimum cut. We refer the reader
to Grötschel et al. [1988, Chapter 6] for an in-depth discussion of the relation be-
tween separation and optimization. In fact, by an application of linear programming
duality, we have the following.

LEMMA 2.1 [MARTIN 1991; CARR AND LANCIA 2002]. From an M × N com-
pact formulation of the separation problem associated with an optimization prob-
lem, it is possible to generate an (N +1) × M compact formulation for the opti-
mization problem.

Applying this lemma to a compact linear formulation for minimum cut yields a
compact set of inequalities which are as strong as and may replace (2) in SEP(n).
Thus our results give a compact formulation equivalent to SEP(n) with O(n3) vari-
ables and O(n2) constraints. Previously the smallest known equivalent formulations
had size �(n3) × �(n3). Wong [1980], Claus [1984], Arthanari [1982], Arthanari
and Usha [2000], and Carr [1996; 1995] had all proposed such relaxations. The
formulation derived from our work, which we present shortly, can be seen as an
extension of Carr’s cycle-shrink relaxation [Carr 1996]; however, we note that
Arthanari and Usha’s multistage-insertion relaxation [Arthanari and Usha 2000] is
equivalent in strength [Arthanari and Usha 2001].

For any positive integer r , the set of linear inequalities we derive can be used in any
linear relaxation in place of the constraints, x(δ(S)) ≥ r for all S ⊆ V : ∅ 	= S 	= V .
Let V ′ = V \ {1}. We introduce n − 1 vectors of variables, yk ∈ REk for k ∈ V ′,
where it is possible to think of each yk as representing the edges in the complete
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graph (Vk, Ek). ∑
k∈V ′

yk
e = xe ∀e ∈ E (4)

yk(δ(k) ∩ Ek) ≥ r ∀k ∈ V ′ (5)

yk(δ(i) ∩ Ek) ≥ 0 ∀k ∈ V ′, i ∈ V : i < k (6)

yk
i,k ≥ 0 ∀k ∈ V ′, i ∈ V : i < k (7)

yk
i, j ≤ 0 ∀k ∈ V ′, i j ∈ Ek−1 (8)

We observe that there are O(n3) variables and O(n2) constraints, excluding the
nonnegativity and nonpositivity constraints (7) and (8), respectively. If the variables
were integral, we could inductively think of each yk as adding a new vertex k to the
r -connected subgraph of Ek−1 defined by y2 + · · · + yk−1 in a way that preserves
r -connectivity. The inequalities insist that r edges among δ(k) ∩ Ek are added,
which is modeled by Eq. (5) and Eq. (7). Additionally some edges in Ek−1 which
are selected in y2 + · · · + yk−1 are allowed to be deleted in a way that preserves r -
connectivity; this is modeled by Eq. (6) and Eq. (8). We do not prove this explicitly
here, but note that this follows from the results of the next section.

THEOREM 2.2. The constraints (4)–(8) are equivalent to x(δ(S)) ≥ r for all
S ⊆ V : ∅ 	= S 	= V .

With the results we prove in the next section, this theorem follows through some
algebraic manipulation and the constructive proof of Lemma 2.1 [Martin 1991; Carr
and Lancia 2002], which essentially follows from linear programming duality.

Our formulation also has applications for other network design problems. The
inequalities (4)–(8) can be extended to model generalizations such as Steiner cuts.

3. The Formulation

We start by taking a complete graph G = (V = Vn, E = En) with an edge-cost
vector c ∈ QE

+. Our formulation has a variable xi, j for each edge i j , and requires
only n − 1 additional variables and O(n3) constraints.

Minimize
∑
i j∈E

ci, j xi, j P(n)

subject to ∑
2≤i≤n

zi = 1 (9)

xi,k + x j,k ≥ xi, j + 2zk ∀i j ∈ E, k ∈ V : (10)
i, j < k

xi,k ≥ zk ∀i ∈ V, k ∈ V : (11)
i < k

xi, j ≥ 0 ∀i j ∈ E (12)
zi ≥ 0 ∀i ∈ V \ {1}. (13)
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3.1. PROOF OF CORRECTNESS. To establish the correctness of the previous for-
mulation, we begin by showing that the incidence vectors of cuts in G can indeed
be extended to feasible solutions of P(n).

LEMMA 3.1. If x is the incidence vector of a cut C ⊆ E then there exists a
z ∈ {0, 1}V \{1} such that (x, z) ∈ P(n).

PROOF. Let S ⊂ V be the set such that C = δ(S) and 1 ∈ S. We construct a
z ∈ {0, 1}V \{1} such that (x, z) ∈ P(n). If l is the least index of any vertex in V \S, we
set zl = 1 and zi = 0 for i 	= l. Observe that our choice of z satisfies (9), (13), and
the members of (11) and (10) with k 	= l, since the latter simply reduce to standard
triangle inequalities in this case. It remains to consider (11) and (10) when k = l.

By our choice of l, we have l ∈ V \ S while i ∈ S for all i < l, hence xi,l = 1
for all i < l, and (x, z) satisfies (11). Similarly for a member of (10) with k = l we
have i, j ∈ S, hence xi,k = x j,k = 1, xi, j = 0, and the inequality is satisfied.

Next we show that the projections of integral solutions of P(n) onto the x vari-
ables are indeed related to cuts in G.

LEMMA 3.2. If (x, z) ∈ P(n) is integral then x dominates the incidence vector
of a cut C ⊆ E.

PROOF. We assume n ≥ 2 is the minimal value for which the statement does
not hold. If n = 2, then (9) and (11) imply x1,2 ≥ 1, so we must have n > 2. By (9)
and (13) there exists an l ∈ V \ {1} such that zl = 1. If l = n, then by considering
(11) for each i < n, we see that x dominates δ({n}), hence we must have l 	= n.

If we let V ′ = V \ {1, n}, x ′ = x |En−1 and z′ = z|V ′ , then observe that (x ′, z′) ∈
P(n − 1). Thus by our initial assumption on the minimality of n, there exists a set
S ⊂ V ′ such that x ′ dominates δ(S); let T = V ′ \ S. It suffices for us to show that
x dominates either δ(S ∪ {n}) or δ(T ∪ {n}). This does not hold only if there are
i ∈ S and j ∈ T such that xi,n = x j,n = 0; however, since xi, j = 1, the inequality
of (10) with i and j as defined earlier and k = n precludes this.

Lemma 3.1 establishes that P(n) is a relaxation for the set of incidence vectors
of minimum cuts: The optimal value of P(n) is at most con(G). Our goal in this
section is to show that this bound is tight, which by way of a convex decomposition
lemma of Carr and Vempala [2002] implies that P(n) has an integral optimum
solution. In the next section we give an explicit procedure for obtaining such an
integral convex decomposition of a feasible fractional solution.

THEOREM 3.3. The optimal value of P(n) is equal to con(G).

We will need the following well-known lemma conjectured by Lovász [1976]
and proven by Mader [1978].

LEMMA 3.4. Let G be an Eulerian multigraph, x ∈ V (G), and suppose G
is k-edge-connected between any two vertices u, v 	= x. Then we can find two
neighbors y, z of x such that, if we remove two edges xy and xz but join y to z by
a new edge, the resulting graph is still k-edge-connected between any two vertices
u, v 	= x. Morever, if x has at least two distinct neighbors, then there exist distinct
y, z satisfying the preceding conditions.

The operation outlined by this lemma is known as a splitting-off operation
(x, y, z) at the vertex x . The distinctness condition is not always stated but can
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be guaranteed [Frank 1992]. The key observation is that we may interpret each
inequality (10) as corresponding to a splitting-off operation in G. We explore and
make this idea precise in the proof of the next lemma.

LEMMA 3.5. If G = Kn and c is an even integral vector, then for any vector
(x, z) ∈ P(n) there exists a vector d ∈ Z

V \{1}
+ such that c ·x ≥ d · z and con(G, c) =

min2≤i≤n di .

PROOF. We proceed by induction on n. If n = 2, then the inequality (11)
implies c1,2x1,2 ≥ c1,2z2 = con(G, c) · z2 for any feasible (x, z). If n > 2 we let
G ′ = (V, E ′) be the multigraph that contains exactly cu,v parallel edges between
each pair of vertices u, v, so that

con(G, c) = con(G ′, ���). (14)

Lemma 3.4 guarantees a sequence of splitting-off operations, S = ((n, s1,
t1), . . . , (n, sk, tk)) in G ′ at vertex n such that: (i) vertex n has a single neighbor s ∈ V
in the resulting multigraph H ′, and (ii) con(G ′, ���) = min{|δG ′(n)|, con(H ′, ���)}.
Moreover, since no minimal cut in H ′ may separate n and s, we have

con(G ′, ���) = min{|δG ′(n)|, con(H ′ − n, ���)}. (15)

For each pair u, v ∈ V , we let hu,v be the number of edges between u and v in
H ′ − n, so that

con(H ′ − n, ���) = con(G − n, h). (16)

If (x, z) ∈ P(n) then observe that the restriction (x, z)|En−1×Vn−1\{1} belongs to
P(n − 1), hence by our inductive hypothesis, there exists a vector d ∈ Z

Vn−1\{1}
+

such that h · x |En−1 ≥ d · z|{2,... ,n−1} and con(G − n, h) = min2≤i≤n−1 di . Setting
dn = |δG ′(n)|, our goal is to use the aforesaid bound on h · x |En−1 to show that
c · x ≥ d · z + dnzn , which would imply the lemma since by (14), (15), and (16) we
have already established con(G, c) = min{|δG ′(n)|, con(G − n, h)} = min2≤i≤n di .

We derived h from c by the sequence of splitting-off operations S, and we observe
that each triple in S corresponds to an equality of Eq. (10) whose coefficients model
the corresponding operation (in this calculation, the addition and equality signs on
the left-hand side refer to addition of whole inequalities, not just the left-hand sides).∑

i, j∈E(Kn−1)

hi, j xi, j ≥
∑

2≤i≤n−1

di zi

+
∑

1≤i≤k

(xsi ,n + xti ,n − xsi ,ti ≥ 2zn)

+ |δH ′(n)| · (xs,n ≥ zn)

=
∑

i, j∈E(Kn)

ci, j xi, j ≥ dnzn +
∑

2≤i≤n−1

di zi

PROOF OF THEOREM 3.3. Without loss of generality we may assume that c has
been scaled so that it is an integral vector whose components are even. For any
d ∈ Z

V \{1}
+ and feasible solution (x, z) ∈ P(n), (9) and (13) imply that d · z ≥

min2≤i≤n di . Thus by Lemma 3.5 we have c · x ≥ con(Kn, c).
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Compacting Cuts 27:9

3.2. STEINER CUTS. Given an undirected graph G = (V, E) with an edge-cost
vector c ∈ QE

+, and a subset S ⊆ V (whose elements are called the terminals),
the Steiner edge connectivity of S is the minimum cost of an edge cut in G that
terminals are found in at least two shores of the cut. The cut that realizes the Steiner
connectivity of S is called the minimum Steiner cut. The problem of finding the
minimum Steiner cut was first studied by Dinitz and Vainshtein [1994] (who called
it the minimum S-cut), and later by Cole and Hariharan [2003]. Our formulation
extends directly to this problem. Indeed, if we remove from the LP formulation P(n)
all the variables zi for i ∈ V \ S, the resulting linear program gives an exact
formulation for the minimum Steiner cut.

4. Constructive Decomposition

In this section, we give an alternative proof of Theorem 3.3. As opposed to the
one we presented in Section 3, this is a constructive proof, and as such provides
an algorithm to extract an integral solution, from an optimal solution to the linear
program P(n).

It is easy to describe how to extract an integral solution. We first do this and then
focus on proving the correctness of our procedure. As a corollary of our result,
we find that any feasible solution to the linear program P(n) dominates a convex
combination of cuts.

4.1. EXTRACTING AN INTEGRAL SOLUTION. Let (x∗, z∗) be an optimal solution
to the LP P(n). We assume that (x∗, z∗) is minimal, that is, for any x < x∗, the
vector (x, z∗) is not feasible for the linear program. This assumption can be made
without loss of generality because the cost ci, j is nonnegative for every edge i j . To
simplify the exposition, we’ll sometimes refer to x j,i as xi, j for i < j , and assume
for convenience that xi,i = 0 for all i .

We use the following notation.

k A = max {i | z∗
i > 0}

S = {{ j, k} | x∗
j,k > 0 and (x∗

k A, j = 0 or x∗
k A,k = 0)}

λ = min({z∗
k A} ∪ {x∗

i, j | {i, j} ∈ S})

Now we can define the integral vector (x A, z A).

x A
i, j =

{
1, {i, j} ∈ S
0, {i, j} 	∈ S

z A
i =

{
1, i = k A

0, i 	= k A

(17)

We will show that (x A, z A) is feasible for the linear program, and therefore, by
Lemma 3.1, a cut.

THEOREM 4.1. {x A, z A} is a feasible solution to the LP.
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When we “peel away” A, what remains we call B.

x B
i, j = 1

1 − λ
·
{

x∗
i, j − λ, {i, j} ∈ S

x∗
i, j , {i, j} 	∈ S

zB
i = 1

1 − λ
·
{

z∗
i − λ, i = k A

z∗
i , i 	= k A

(18)

In other words, (x∗, z∗) is a convex combination of (x A, z A) and (x B, zB).

λ(x A, z A) + (1 − λ)(x B, zB) = (x∗, z∗)

Just like (x A, z A), this new pair of vectors forms a feasible solution.

THEOREM 4.2. {x B, zB} is a feasible solution to the LP.

The main result of this section is summarized in Theorem 4.3.

THEOREM 4.3. If (x∗, z∗) is a minimal optimal solution to the linear pro-
gram P(n), then (x A, z A) is an optimal integral solution and its cost is equal to the
cost of (x∗, z∗).

4.2. CONVEX DECOMPOSITION INTO CUTS. Eq. (17) and Theorem 4.3 show us
how to round an optimal fractional solution of LP P(n) to an integral solution of
equal cost. A stronger statement follows directly.

THEOREM 4.4. Any minimal feasible solution to the linear program P(n) is a
convex combination of cuts.

PROOF. Let (x∗, z∗) be a minimal feasible solution, and define (x A, z A) and
(x B, zB) by (17) and (18). If (x B, zB) is integral, we are done. Otherwise, we would
like to treat (x B, zB) just like we did (x∗, z∗) and continue by extracting another
integral solution. Such a process can go on for at most n − 1 + (n

2

)
steps, because

each time at least one additional variable is reduced to 0. The resulting cuts then
give the claimed convex combination.

This will be possible as long as (x B, zB) is guaranteed to be minimal. To see
that this holds, suppose that (xC , zC ) < (x B, zB) were a feasible solution. Then
λ(x A, z A) + (1 − λ)(xC , zC ) would be both feasible (as a convex combination of
two feasible solutions) and strictly dominated by (x∗, z∗). Since (x∗, z∗) is minimal,
it follows that (x B, zB) is minimal.

4.3. PROOFS.

LEMMA 4.5. If j < k and x∗
j,k > z∗

k , then there exists i < k, i 	= j such that
x∗

i,k + x∗
j,k − 2z∗

k = x∗
i, j .

PROOF. By minimality, x∗
j,k cannot be reduced without violating some con-

straint. If x∗
j,k > z∗

k , the only active constraint for x∗
j,k can be one of the con-

straints (10).

LEMMA 4.6 (TRIANGLE INEQUALITY). If i 	= j 	= k then x∗
i, j + x∗

i,k ≥ x∗
j,k .

PROOF. Let m be the minimum possible value for which there exists a triple
{i, j, k} such that

x∗
i, j + x∗

i,k < x∗
j,k (19)

and m = max{i, j, k}. By symmetry, we may assume j < k.
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In the case where j < k < i , the LP constraint x∗
j,i +x∗

k,i −2z∗
i ≥ x∗

j,k contradicts
the assumption (19).

In the case where i < k, we consider x∗
j,k . If x∗

j,k = z∗
k , then

x∗
i,k + x∗

i, j − x∗
j,k ≥ x∗

i,k − x∗
i, j − x∗

j,k

= x∗
i,k + x∗

j,k − 2x∗
j,k − x∗

i, j

= x∗
i,k + x∗

j,k − 2z∗
k − x∗

i, j

≥ 0.

If x∗
j,k > z∗

k , we have to do a little more work. First, by Lemma 4.5, there exists a
p such that p < k, p 	= j and

x∗
j,k + x∗

p,k − 2z∗
k = x∗

p, j . (20)

If p = i , this becomes x∗
j,k + x∗

i,k − 2z∗
k = x∗

i, j . Since x∗
i,k − z∗

k ≥ 0, we can
subtract this quantity twice from the left side to obtain x∗

j,k − x∗
i,k ≤ x∗

i, j , which
again contradicts the assumption (19).

If p 	= i , then the fact that i 	= j 	= p, and i, j, p < m and the choice of
(minimal) m imply that x∗

p,i + x∗
i, j ≥ x∗

p, j . We substitute the left-hand side for x∗
p, j

in (20) to get x∗
p,i +x∗

i, j ≥ x∗
j,k +x∗

p,k −2z∗
k . We also know from an LP constraint that

x∗
i,k +x∗

p,k −2z∗
k ≥ x∗

p,i , which we can use to make the left side of our equation a little
bigger: x∗

i,k + x∗
p,k − 2z∗

k + x∗
i, j ≥ x∗

j,k + x∗
p,k − 2z∗

k . After some simple arithmetic,
we arrive at x∗

i,k + x∗
i, j ≥ x∗

j,k , which contradicts the assumption (19).

In order to show that both (x A, z A) and (x B, zB) are feasible, we will examine
closely the structure of the graph induced by x A. The next few lemmas list some
useful properties of its edge-set S.

For conciseness, we occasionally write “A xor B”, where A and B are equations,
to say that exactly one of the equations A or B holds.

LEMMA 4.7. If { j, k} ∈ S, then either x∗
k A, j = 0 or x∗

k A,k = 0, but not both.

PROOF. Let { j, k} ∈ S. By definition, then x∗
j,k > 0, and (x∗

k A, j = 0 or x∗
k A,k =

0). Not both x∗
k A, j and x∗

k A,k can vanish, however, because then the triangle inequality
would dictate that x∗

j,k = 0.

LEMMA 4.8. If j < k A, then { j, k A} ∈ S.

PROOF. We need only show that x∗
j,k A > 0 and (x∗

k A,k A = 0 or x∗
k A, j = 0).

Recall that z∗
k A > 0 and x∗

j,k A ≥ z∗
k A , so x∗

j,k A > 0. Also, x∗
k A,k A is defined to be 0, so

we satisfy the “or”-term.

LEMMA 4.9. If i, j < k A, then {i, j} 	∈ S.

PROOF. To show that {i, j} 	∈ S, it is enough to show that x∗
i,k A 	= 0 and x∗

j,k A 	=
0; we use Lemma 4.8 to get {i, k A} ∈ S and { j, k A} ∈ S, from which it follows that
x∗

i,k A > 0 and x∗
j,k A > 0.

LEMMA 4.10. If i 	= j 	= k, then {{i, j}, {i, k}, { j, k}} 	⊂ S.
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PROOF. Assume the opposite and use Lemma 4.7 to get (x∗
k A,i = 0 xor

x∗
k A, j = 0) and (x∗

k A,i = 0 xor x∗
k A,k = 0) and (x∗

k A, j = 0 xor x∗
k A,k = 0), which is

false.

LEMMA 4.11. If i 	= j 	= k and { j, k} ∈ S, then {i, j} ∈ S or {i, k} ∈ S.

PROOF. Let i 	= j 	= k such that { j, k} ∈ S, and assume {i, j} 	∈ S and
{i, k} 	∈ S. This gives

x∗
j,k > 0 and (x∗

k A, j = 0 or x∗
k A,k = 0),

x∗
i, j = 0 or (x∗

k A,i > 0 and x∗
k A, j > 0), and

x∗
i,k = 0 or (x∗

k A,i > 0 and x∗
k A,k > 0).

(21)

Since x∗
j,k > 0, by triangle inequality we have that x∗

i, j > 0 or x∗
i,k > 0. By

symmetry, assume x∗
i, j > 0, which means that (x∗

k A,i > 0 and x∗
k A, j > 0). Since

x∗
k A, j > 0, it follows from (x∗

k A, j = 0 or x∗
k A,k = 0) that x∗

k A,k = 0. Using the
triangle inequality on x∗

k A,k = 0 and x∗
k A,i > 0 gives us x∗

i,k > 0, which we can
use to conclude that (x∗

k A,i > 0 and x∗
k A,k > 0). This contradicts the already derived

equality x∗
k A,k = 0.

The final lemma that we need will be used to argue that the subtraction used to
define x A and x B in (17) and (18) is valid.

LEMMA 4.12. If i, j < k and i 	= j and {i, k} ∈ S and { j, k} ∈ S, then
x∗

i,k + x∗
j,k − 2λ ≥ x∗

i, j .

PROOF. {i, j, k} satisfies the conditions of the lemma, but x∗
i,k +x∗

j,k −2λ < x∗
i, j .

Take such a triple with minimum possible m = max{i, j}. By symmetry, assume
m = j > i .

First, suppose that x∗
k A,k 	= 0. In this case we derive a contradiction, so assume

that x∗
i, j + x∗

i,k − 2λ < x∗
j,k . Since {i, k} ∈ S and { j, k} ∈ S, from Lemma 4.7 we

know (x∗
k A,i = 0 xor x∗

k A,k = 0), and (x∗
k A, j = 0 xor x∗

k A,k = 0). Since x∗
k A,k 	= 0,

it follows that x∗
k A,i = 0 and x∗

k A, j = 0 and by the triangle inequality x∗
i, j = 0,

which we can plug into our assumption to get x∗
i,k + x∗

j,k − 2λ < 0. But now (since
{i, k} ∈ S and { j, k} ∈ S,) we have x∗

i,k ≥ λ and x∗
j,k ≥ λ, which contradicts the

previous inequality.
If x∗

k A,k = 0, but x∗
i, j = 0, then the logic from the previous paragraph still applies

(skipping to the part where we conclude that x∗
i, j = 0), so let us now consider

the case where x∗
k A,k = 0 and x∗

i, j > 0. First, since {i, k} ∈ S and { j, k} ∈ S,
Lemma 4.10 gives {i, j} 	∈ S, which implies that j 	= k A (or else Lemma 4.8 would
dictate that {i, j} ∈ S). This gives us two further cases.

Case j < k A. Here we start with the LP constraint x∗
i,k A + x∗

j,k A − 2z∗
k A ≥ x∗

i, j ,
and since z∗

k A ≥ λ, we get x∗
i,k A + x∗

j,k A − 2λ ≥ x∗
i, j . Now if k = k A we’re done

(simply substitute k for k A), so let k 	= k A: first, since { j, k} ∈ S, Lemma 4.7 gives
us x∗

j,k A = 0 xor x∗
k,k A = 0. We can argue that x∗

j,k A > 0 (since { j, k A} ∈ S by
Lemma 4.8), which means x∗

k,k A = 0. A similar argument applies to {i, k} ∈ S.
Now we can use the triangle inequality to show that x∗

j,k A = x∗
j,k and x∗

i,k A = x∗
i,k ,

which we can substitute into our previous inequality to get x∗
i,k + x∗

j,k − 2λ ≥ x∗
i, j .
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Case j > k A. By the definition of k A, we have z∗
j = 0, and since x∗

i, j > 0, we
may conclude that x∗

i, j > z∗
j . Now by Lemma 4.5 there exists p such that p < j ,

p 	= i , and

x∗
i, j + x∗

p, j − 2z∗
j = x∗

i,p. (22)

Since z∗
j = 0, we actually have x∗

i, j + x∗
p, j = x∗

i,p. At this point we have yet another
two cases to consider, based on x∗

p,k .

Case x∗
p,k > 0. We see that {p, k} ∈ S, since we already know x∗

k A,k = 0. This,
along with the fact that i, p < j = m, and i, p < k, and i 	= p, allows us to use
the inductive hypothesis (the maximality of m = j) to get x∗

i,k + x∗
p,k − 2λ ≥ x∗

i,p.
Substituting for x∗

i,p gives x∗
i,k + x∗

p,k − 2λ ≥ x∗
i, j + x∗

p, j . Now by the triangle
inequality we have x∗

p, j + x∗
j,k ≥ x∗

p,k , which we can use to increase the value of
x∗

p,k in our previous equation to get x∗
i,k + x∗

p, j + x∗
j,k − 2λ ≥ x∗

i, j + x∗
p. j . This can

now be simplified to x∗
i,k + x∗

j,k − 2λ ≥ x∗
i, j .

Case x∗
p,k = 0. From the triangle inequalities we have x∗

i,k = x∗
i,p and x∗

j,k = x∗
p, j .

Substituting this into (22) gives x∗
i, j + x∗

j,k = x∗
i,k . Subtracting x∗

j,k from both
sides gives x∗

i,k − x∗
j,k = x∗

i, j . Next we’ll note that { j, k} ∈ S, which means that
x∗

j,k ≥ λ. We then add 2(x∗
j,k − λ) to the left side of our previous equation to get

x∗
i,k + x∗

j,k − 2λ ≥ x∗
i, j .

PROOF OF THEOREM 4.1. The constraint
∑

z A
i = 1 is satisfied since only one

component of z A is positive (namely z A
k A ), and it equals 1.

The constraint x A
i,k ≥ z A

k is only in question when z A
k > 0, that is, when k = k A,

so let i < k = k A. By Lemma 4.8, we have {i, k} ∈ S, which in turn means x A
i,k = 1.

Thus the constraint ends up requiring 1 ≥ 1, which is true.
The final LP constraint is x A

i,k + x A
j,k − 2z A

k ≥ x A
i, j for all i, j < k, i 	= j .

Take such a triple {i, j, k}. Now if k = k A, then we know z A
k = 1. Thus the

constraint is equivalent to x A
i,k A + x A

j,k A − 2 ≥ x A
i, j . Since {i, k A}, { j, k A} ∈ S (by

Lemma 4.8), we know x A
i,k A = 1 = x A

j,k A , so the constraint reduces to 1+1−2 ≥ x A
i, j .

It thus suffices to show that x A
i, j = 0, which we can do because {i, k A}, { j, k A} ∈ S,

and so (by Lemma 4.10), {i, j} 	∈ S.
Now if k 	= k A, then z A

k = 0 by definition, and the constraint becomes x A
i,k+x A

j,k ≥
x A

i, j . It is possible that none of {i, j}, {i, k}, and { j, k} is in S, in which case the
constraint becomes 0+0 ≥ 0. Otherwise Lemmas 4.11 and 4.10 tell us that exactly
two of {i, j}, {i, k}, and { j, k} are in S, and the constraint reduces to either 1+1 ≥ 0,
or 1 + 0 ≥ 1. Both of these are true.

PROOF OF THEOREM 4.2. Before looking at the constraints, it is worth mention-
ing that the implicit nonnegativity constraints are met because we only subtract λ
from variables which we’ve already proven to be at least λ.

Now, the first LP constraint requires that
∑

zB
i = 1. This is true because

∑
zB

i = 1

1 − λ

(∑
i

z∗
i − λ

)
= 1

1 − λ
(1 − λ) = 1.
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The second LP constraint requires x B
i,k ≥ zB

k for i < k. Note that we won’t bother
talking about dividing by 1 − λ, since we do this to both sides when obtaining this
constraint from the {x∗, z∗} version.

This constraint is not an issue if k < k A, since in this case by Lemma 4.9
{i, k} 	∈ S, so we don’t subtract from either side of the solution {x∗, z∗}. If k = k A,
then Lemma 4.8 gives {i, k A} ∈ S, which means that we subtract from both sides
of the {x∗, z∗} version of this constraint, which is also fine. Finally, if k > k A, then
zB

k = z∗
k = 0 (from the definition of k A), turning the constraint into x B

i,k ≥ 0, which
is satisfied since we already argued that all the variables are nonnegative.

The third LP constraint requires that x B
i,k + x B

j,k − 2zB
k ≥ x B

i, j for all i, j < k
where i 	= j . Again, we won’t bother talking about dividing by 1 − λ, since we
do this to both sides. We’ll first consider the case where none of {i, j}, {i, k}, and
{ j, k} is in S. In this case, we know that k 	= k A, or else Lemma 4.8 would dictate
that { j, k} ∈ S. This means that our constraint remains the same as the {x∗, z∗}
version. Now, if at least one of {i, j}, {i, k}, and { j, k} is in S, then Lemmas 4.11
and 4.10 tell us that exactly 2 of them are. This gives us three cases.

Case 1: {i, k} ∈ S and { j, k} ∈ S. In this case we subtract 2λ from the left-hand
side of the {x∗, z∗} version of this constraint. Now we know k ≥ k A by Lemma 4.9,
so if k = k A, then we also end up adding 2λ to the left-hand side of the constraint
(in obtaining the −2zB

k ). If k > k A, then the definition of k A tells us that zB
k = 0,

and then Lemma 4.12 ensures that we can subtract 2λ from the left-hand side of
the {x∗, z∗} version, and still meet the constraint.

Cases 2 and 3: {i, k} ∈ S and {i, j} ∈ S or { j, k} ∈ S and {i, j} ∈ S. In both
these cases {i, j} ∈ S, which means that k 	= k A. Both {i, j} ∈ S and {i, k} ∈ S,
if {i, j} ∈ S by Lemma 4.10. Thus zB

k = z∗
k , and we end up simply subtracting λ

from both sides of the {x∗, z∗} version of the constraint, which is fine.

PROOF OF THEOREM 4.3. First, it is not difficult to see that λ(x A, z A) + (1 −
λ)(x B, zB) = (x∗, z∗). For example, for each {i, j} it follows from the definitions
that λx A

i, j +(1−λ)x B
i, j = x∗

i, j . Indeed, if {i, j} ∈ S we have λ+(x∗
i, j −λ) = x∗

i, j , and if
{i, j} 	∈ S we have 0+x∗

i, j = x∗
i, j . (A similar argument gives λz A +(1−λ)zB = z∗.)

In Theorems 4.1 and 4.2 we show that (x A, z A) and (x B, zB) are both valid
solutions to the LP. Hence, the original solution (x∗, z∗) is a convex combination of
an integral feasible solution (x A, z A) and another feasible solution. Since (x∗, z∗) is
optimal so are both of the solutions that form the convex combination, and therefore
the integral solution (x A, z A) is optimal for the linear program, which completes
the proof.

5. �1 Embeddability

Every cut in a graph defines a (semi)metric d, where d(v, w) = 1 if v and w are
on the opposite shores of the cut, and d(v, w) = 0 otherwise. Such cut metrics are
closely related to �1 metrics, because every �1 metric on an n-element set V can
be written as a nonnegative combination of cut metrics on V [Deza and Laurent
1997, p. 40]. Given a rational metric d, it is NP-complete to determine whether
d is �1-embeddable [Avis and Deza 1991]. The decomposition of d as

∑
i αiδ(Si ),

where αi > 0 and Si ⊆ V , is clearly a certificate for the �1-embeddability of d.
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The certificate consists of the vector α and the list of sets Si . By Carathéodory’s
theorem, the number of cut metrics used need not be more than

(n
2

)
, and so the

certificate consists of O(n2) rational numbers and O(n2) n-bit vectors (to represent
the sets).

Our linear programming formulation gives a more compact certificate. Take a
decomposition of d into cut metrics as before and let λ = ∑

i αi . Then d ′ = d/λ =∑
i (αi/λ)δ(Si ) is a convex combination of cut metrics. Let z be an n −1-vector and

d ′
v,w = d(v, w)/λ. If (d ′, z) is feasible for our LP, then we can use the procedure

of Theorem 4.1 to extract cut metrics that define d ′ and thus verify that d ′ is a
convex combination of cut metrics. The (n −1)-vector z thus together with λ forms
a certificate for �1-decomposability of d.

The standard linear programming formulation [Conforti et al. 2000; Tamir 1994]
also provides a certificate, but it consists of n rational vectors of length n each, that
is, a total of n2 values.

6. Concluding Remarks and Open Questions

The O(|V |3) × O(|V |2) minimum cut formulation we present can be viewed (in
a dual) sense as selecting a collection of splitting-off operations. Can we gener-
alize this to other problems, for instance, spanning tree, by forging a connection
between an algorithmic procedure and a formulation? Finally, can the relaxation we
obtain for k-edge-connected spanning subgraph be extended to generalized Steiner
network problems? The fact that splitting-off can be performed while preserving
pairwise connectivity requirements indicates that this might be possible.
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GRÖTSCHEL, M., LOVÁSZ, L., AND SCHRIJVER, A. 1988. Geometric Algorithms and Combinatorial

Optimization. Springer, Berlin.
JAIN, K. 2001. A factor 2 approximation algorithm for the generalized Steiner network problem. Com-

binatorica 21, 39–60.
KARGER, D. R. 2000. Minimum cuts in near-linear time. J. ACM 47, 46–76.
KHOT, S., AND VISHNOI, N. 2005. The unique games conjecture, integrality gap for cut problems and

embeddability of negative type metrics into �1. In Proceedings of the 46th Symposium on Foundations
of Computer Science.

LOVÁSZ, L. 1976. Unsolved problems. In Proceedings of the 5th British Combinatorial Conference.
Utilitas Math., 683–685. Congressus Numerantium, No. XV.
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