
Noname manuscript No.
(will be inserted by the editor)

Keyword Programming in Java

Greg Little · Robert C. Miller

Received: date / Accepted: date

Abstract Keyword programming is a novel technique for reducing the need to remem-

ber details of programming language syntax and APIs, by translating a small number

of unordered keywords provided by the user into a valid expression. In a sense, the

keywords act as a query that searches the space of expressions that are valid in the

given context. Prior work has demonstrated the feasibility and merit of this approach

in limited domains. This paper explores the potential for employing this technique in

much larger domains, specifically general-purpose programming languages like Java.

We present an algorithm for translating keywords into Java method call expressions.

When tested on keywords extracted from existing method calls in Java code, the al-

gorithm can accurately reconstruct over 90% of the original expressions. We tested

the algorithm on keywords provided by users in a web-based study. The results sug-

gest that users can obtain correct Java code using keyword queries as accurately as

they can write the correct Java code themselves. We implemented the algorithm in

an Eclipse plug-in as an extension to the autocomplete mechanism and deployed it in

a preliminary field study of several users, with mixed results. One interesting result

of this work is that most of the information in Java method call expressions lies in

the keywords, and details of punctuation and even parameter ordering can often be

inferred automatically.

Keywords Java · Autocomplete · Code Assistants

1 Introduction

Software development is rapidly changing and steadily increasing in complexity. Mod-

ern programmers must learn and remember the details of many programming languages

and APIs in order to build and maintain today’s systems. A simple web application

G. Little
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139
Tel.: +617-308-4673
E-mail: glittle@gmail.com

R. Miller
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139

2

Fig. 1 In keyword programming, the user types some keywords, presses a completion com-
mand (such as Ctrl-Space in Eclipse), and the keywords are translated into a valid expression.

may require the use of half a dozen formal syntaxes – such as Java, Javascript, PHP,

HTML, CSS, XML, SQL – in addition to many different APIs in each language. Learn-

ing, remembering, and using all these technologies correctly is becoming a significant

burden.

Our goal is to develop techniques that reduce the burden of remembering the

details of a particular language or API. The technique proposed in this paper, keyword

programming, uses a few keywords provided by the user to search for expressions that

are possible given the context of the code. The user interface takes the form of an

advanced code completion interface in an IDE. For instance, Figure 1 shows a user

entering add line in a Java file, which the system translates in-place to lines.-

add(in.readLine()). The generated expression contains the user’s keywords add and

line, but also fills in many details, including the receiver objects lines and in, the full

method name readLine, and the formal Java syntax for method invocation.

In this paper, we propose an algorithm for finding keyword query completions

quickly. This work builds on keyword programming techniques in Chickenfoot [5] and

Koala [4], but scales the algorithms to the larger domain of Java.

This work is similar to Prospector [6] and XSnippet [9], which suggest Java code

given a return type and available types. However, our system uses keywords to guide

the search, making it more expressive when type information alone is not enough to

infer the desired code.

Our key contributions are:

– An algorithm for translating keyword queries into Java code efficiently.

– An evaluation of the algorithm on a corpus of open source programs, using artificial

inputs generated by extracting keywords from existing method call expressions.

The algorithm is able to reconstruct over 90% of the expressions correctly given

only the keywords (in random order). This suggests that punctuation and ordering

contribute relatively little information to most Java method calls, so an automatic

technique like keyword programming can take care of these details instead.

– An evaluation of the algorithm on human-generated inputs. The algorithm trans-

lates the keyword queries with the same accuracy as users writing correct Java code

without tool support (which is roughly 50% in our study).

3

– An Eclipse plug-in called Quack that provides a user interface for translating key-

word queries in Java source files. This plug-in available for people to download and

try.

– A field test of Quack in which several developers incorporated the tool into their

work flow for a week. The accuracy of the tool in the field study was similar to

the earlier human-generated input study (roughly 50%), and the study also yielded

some important lessons about its user interface.

In the next section, we present a model, which is followed by a problem statement.

We then present the algorithm, and two evaluations of the algorithm itself. This is

followed by a presentation of an Eclipse plug-in that provides an interface to the algo-

rithm. We also discuss a field test of the plug-in. Then we discuss related work, future

work, and conclusions.

2 Model

We want to model the following scenario: a user is at some location in their source

code, and they have entered a keyword query. The keywords are intended to produce

a valid expression in a programming language, using APIs and program components

that are accessible at that point in the source code. In order to find the expression,

we need to model the context of the location in the source code. In the case of Java,

we need to model the available methods, fields and local variables, and how they fit

together using Java’s type system. The resulting model defines the search space.

Although this paper focuses on Java, our model is more generic, and could be

applied to many languages. We define the model M as the triple (T , L, F), where T

is a set of types, L is a set of labels used for matching the keywords, and F is a set of

functions.

2.1 Type Set: T

Each type is represented by a unique name. For Java, we get this from the fully qualified

name for the type. Examples include int and java.lang.Object.

We also define sub(t) to be the set of both direct and indirect subtypes of t. This

set includes t itself, and any type that is assignment-compatible with t. We also include

a universal supertype >, such that sub(>) = T . This is used when we want to place

no restriction on the resulting type of an expression.

2.2 Label Set: L

Each label is a sequence of alphanumeric keywords. We use labels to represent method

names, so that we can match them against the keywords in a query.

To get the keywords from an identifier, we break up the identifier at punctuation

and capitalization boundaries. For instance, the method name currentTimeMillis is

represented with the label (current, time, millis). Note that capitalization is ignored

when labels are matched against the user’s keywords.

4

Fig. 2 This is a function tree representing the Java expression array.add(src.readLine())
from Figure 1. Each node is associated with a function. The words at the top of each node
represent the return type, and the words at the bottom represent the parameter types. Note
that array and src are modeled as functions, even though they are local variables in the source
code.

2.3 Function Set: F

Functions are used to model each component in an expression that we want to match

against the user’s keyword query. In Java, these include methods, fields, and local

variables.

We define a function as a tuple in T × L × T × ... × T . The first T is the return

type, followed by the label, and all the parameter types. As an example, the Java func-

tion: String toString(int i, int radix) is modeled as (java.lang.String, (to,

string), int, int).

For convenience, we also define ret(f), label(f) and params(f) to be the return

type, label, and parameter types, respectively, of a function f .

2.4 Function Tree

The purpose of defining types, labels and functions is to model expressions that can

be generated by a keyword query. We model expressions as a function tree. Each node

in the tree is associated with a function from F , and obeys certain type constraints.

As an example, Figure 2 shows a function tree modeling the expression array.add(-

src.readLine()) from Figure 1. Note that array and src are modeled as functions,

even though they are local variables in the source code. This is discussed more in the

Java Mapping section below.

In order to talk about function trees more formally, we define each node as a tuple

consisting of an element from F followed by some number of child nodes. For a node

n, we define func(n) to be the function, and children(n) to be the list of child nodes.

We require that the number of children in a node be equal to the number of parameter

types of the function, i.e., |children(n)| = |params(func(n))|. This constraint requires

that the add node in Figure 2 have two children, because add has two parameters.

We also require that the return types from the children fit into the parameters, i.e.,

∀iret(func(children(n)i)) ∈ sub(params(func(n))i). This constraint requires that the

readLine function in Figure 2 return the type String (or a subtype of String), because

the second parameter of add is String.

Note that in the end, the system renders the function tree as a syntactically-correct

and type-correct expression in the underlying language (in this case Java). The function

tree in Figure 2 is rendered as array.add(src.readLine()).

5

2.5 Java Mapping

We now provide the particulars for mapping various Java elements to T , L and F .

Most of these mappings are natural and straightforward, and could be adapted to

other languages.

2.5.1 Classes

A class or interface c is modeled as a type in T , using its fully qualified name (e.g.

java.lang.String). Any class that is assignment compatible with c is added to sub(c),

including any classes that extend or implement c.

The model includes all classes that are directly referenced in the current source file,

plus classes that can be obtained from those classes by method calls or field references.

Since the function trees generated by our algorithm are bounded by a maximum depth,

the model does not include classes that can only be obtained by a method call sequence

longer than that maximum.

2.5.2 Primitive Types

Because of automatic boxing and unboxing in Java 1.5, we model primitive types like

int, and char as being the same as their object equivalents java.lang.Integer and

java.lang.Character.

2.5.3 Instance Methods

Instance methods are modeled as functions that take their receiver object as the first

parameter. For instance, the method: public Object get(int index) of Vector is

modeled as: (java.lang.Object, (get), java.util.Vector, int).

2.5.4 Fields

Fields become functions that return the type of the field, and take their object as a

parameter. For instance, the field public int x of java.awt.Point is modeled as:

(int, (x), java.awt.Point).

2.5.5 Local Variables

Local variables are simply functions that return the type of the variable and take no

parameters, e.g., the local variable int i inside a for-loop is modeled as (int, (i)).

2.5.6 Constructors

Constructors are modeled as functions that return the type of object they construct.

We use the keyword new and the name of the class as the function label, e.g., the con-

structor for java.util.Vector that takes a primitive int as a parameter is represented

by: (java.util.Vector, (new, vector), int).

6

2.5.7 Members of Enclosing Class

Member methods and fields of the class containing the keyword query are associated

with an additional function, to support the Java syntax of accessing these members

with an assumed this token. The new function doesn’t require the object as the first

parameter. For instance, if we are writing code inside java.awt.Point, we would create

a function for the field x like this: (int, (x)). Note that we can model the keyword

this with the additional function (java.awt.Point, (this)).

2.5.8 Statics

In Java, a static method or field is normally accessed using its class name, but can

also be called on a receiver object. To support both forms, we use two functions. For

instance static double sin(double a) in java.lang.Math is modeled with both:

(double, (sin), java.lang.Math, double), and (double, (math, sin), double).

Note that in the second case, math is included in the function label. This is done

since experienced Java programmers are used to including the type name when calling

static methods.

2.5.9 Generics

The model represents generic types explicitly, i.e., we create a new type in T for each

instantiation of a generic class or method. For instance, if the current source file con-

tains a reference to both Vector<String> and Vector<Integer>, then we include both

of these types in T . We also include all the methods for Vector<String> separately

from the methods for Vector<Integer>. For example, the model includes both of the

following the get methods: (String, (get), Vector<String>, int), and

(Integer, (get), Vector<Integer>, int).

The motivation behind this approach is to keep the model simple and programming-

language-agnostic. In practice, it does not explode the type system too much, since

relatively few different instantiations are visible at a time.

2.5.10 Other Mappings

We have experimented with additional mappings of Java syntax into our model. In

the Eclipse plug-in described in section 8, we include numeric and string literals, as

well as array indexing. In section 11.1, we consider other extensions, such as variable

assignment and control flow syntax. Implementing and evaluating these extensions is

future work.

3 Problem

Now that we have a model of the domain, we can articulate the problem that our

algorithm must solve.

The input to the algorithm consists of a model M and a keyword query. We also

supply a desired return type, which we make as specific as possible given the source

code around the keyword query. If any type is possible, we supply > as the desired

return type.

7

The output is a valid function tree, or possibly more than one. The root of the tree

must be assignment-compatible with the desired return type, and the tree should be a

good match for the keywords according to some metric.

Choosing a good similarity metric between a function tree and a keyword query is

the real challenge. We need a metric that matches human intuition, as well as a metric

that is easy to evaluate algorithmically.

Our metric is based on the simple idea that each input keyword is worth 1 point,

and a function tree earns that point if it “explains” the keyword by matching it with a

keyword in the label of one of the functions in the tree. This scoring metric is described

in more detail in the next section.

4 Algorithm

The algorithm uses a score metric to measure the similarity of a function tree to the

keyword query. Function trees with a higher score are considered more similar.

The score for a function tree is dominated by the number of keywords that match

the keyword query, but we have experimented with other heuristics. Given a function

tree where Tfuncs is the list of functions in the tree, we calculate the score as follows:

– +1.0 for each keyword k in the query where there exists an f ∈ Tfuncs such that

k ∈ label(f). This gives 1 point for each keyword that the tree explains.

– -0.05 for each f ∈ Tfuncs. This favors function trees with fewer functions.

– For each f ∈ Tfuncs, consider each w ∈ label(f), and subtract 0.01 if w is not in

the query. This favors less verbose function trees.

– +0.001 for each f ∈ Tfuncs where f is a local variable, or f is a member variable

or member method of the enclosing class. This favors functions and variables which

are close to the user’s context.

We would like the property that the score metric for a function tree is simply the

sum of some value associated with each function in the tree. This gives us a clean way

to add additional heuristics. To achieve this, we associate a vector with each function,

and invent a special way of adding these vectors together so that their sum has the

desired property. We call these explanation vectors, and they are explained next.

4.1 Explanation Vector

If we have n keywords k1, k2, ..., kn in the input query, then an explanation vector has

n+1 elements e0, e1, e2, ..., en. Each element ei represents how well we have explained

the keyword ki on a scale of 0 to 1; except e0, which represents explanatory power

not associated with any particular keyword. When we add two explanation vectors

together, we cap the resulting elements associated with keywords (e1, e2, ..., en) at 1,

since the most we can explain a particular keyword is 1. Note that we do not cap

the resulting element e0. Explanation vectors are compared by summing each vector’s

elements to produce a scalar score, and then comparing those scores.

We calculate an explanation vector expl(f) for each function f ∈ F . In the common

case, we set ei to 1 if label(f) contains ki. For instance, if the input is:

is queue empty

8

and the function f is (boolean, (is, empty), List), then expl(f) would be:

(e0, 1is, 0queue, 1empty)

Now consider the input:

node parent remove node

where node is a local variable modeled with the function (TreeNode, (node)). Since

node appears twice in the input, we distribute our explanation of the word node

between each occurrence:

(e0, 0.5node, 0parent, 0remove, 0.5node)

In general, we set ei = max(x
y , 1), where x is the number of times ki appears in label(f),

and y is the number of times ki appears in the input.

To calculate e0, we start by setting it to −0.05. This accounts for the notion that

each function call in a function tree adds −0.05 to the total score. Next, we subtract

0.01 from e0 for each word in label(f) that does not appear in the input query. Finally,

we add 0.001 if this function represents a local variable, member variable or member

method.

4.2 Dynamic Program

Our algorithm uses a dynamic program, which consists of a table of the following form:

each column represents a return type (for every t ∈ T), and each row represents a

maximum tree height (ranging from 1 to h). Each cell contains at most r pairs. Each

pair contains a cumulative explanation vector, and a root function. This explanation

vector encodes the explanatory power of the best known function tree rooted at the

given function, and with tree height bounded by the maximum height for the given

row. We identify the pairs in the cell with return type t and maximum tree height i as

bestRoots(t, i). Figure 3 shows a sample run of the dynamic program on the input add

line in the context of Figure 1. In the figure, bestRoots(BufferedReader, 1) contains

the pair ((-0.059, 0add, 0line), (BufferedReader, (src))).

Note that this dynamic program is parameterized by a couple of factors: the number

of rows h, and the number of functions in each cell r. In our experiments, we set h = 3

and r = 3. These values are reflected in Figure 3: there are three rows of cells, and each

cell contains at most three function boxes. A height of three seemed large enough to

build common Java expressions. We chose three as a starting point for experimentation

with r. We did increase r to five in the special case of the column for java.lang.Object,

since many functions return subtypes of this type. Ultimately we need to experiment

more with both of these factors, but thus far, they do not appear to be the bottleneck

of the algorithm.

The dynamic program fills out the table row by row, starting with height 1 and

going up to h. In each row, we consider each type, and for each type, we consider each

function which returns the type or a subtype. When we consider a function, we want

to find the best explanation vector of a function tree with this function at the root.

This is done by summing the explanation vector for the function itself with explanation

vectors for each parameter, drawn from lower rows in the table. Pseudocode for this

process is shown in Figure 4.

To illustrate some of this computation, consider the readLine function box at height

2 in Figure 3. The explanation vector associated with this function is (-0.119, 0add,

9

Fig. 3 The dynamic programming table for a run of the algorithm on the input add line in
the context of Figure 1. Each row represents a height, and each column represents a return
type. Each cell contains up to three boxes. The box with the highest score in each cell is
enlarged. Each box represents a function with the name in the center, the return type above
the name, and the parameter types listed below the name. The return type of each function
must be a subtype of the column type that the box is in. The numbers in parenthesis above
each function represent the cumulative explanation vector of the best known function tree
rooted at that function. The number to the left of each explanation vector is simply the sum
of the elements in the vector. To see that the explanation vectors are cumulative, notice that
the explanation vector for the add function in the top row has a 1add and a 1line, even though
the add function itself does not contain both keywords add and line. The 1line is coming
from the explanation vector for readLine, which is the best option for satisfying the String
parameter at height 2.

1line). To compute this, we start with the explanation vector for the function readLine,

which is (−0.06, 0add, 1line). The −0.06 comes from −0.05 as a baseline, and −0.01

for the keyword read which does not appear in the input query add line. Now since

readLine requires a parameter of type BufferedReader, the algorithm looks in the

BufferedReader column at height 1 and finds src with explanation vector (−0.059,

0add, 0line). We add these explanation vectors together to get (−0.119, 0add, 1line),

which is what we see in the figure.

4.3 Extraction

After we have run the dynamic program, we need to extract the highest-scoring function

tree. To do this, we use a greedy recursive algorithm (see Figure 5) which takes the

following parameters: a desired return type t, a maximum height h, and an explanation

vector e (representing what we have explained so far). The function returns a new

function tree, and an explanation vector.

10

procedure DynamicProgram()
/* this function modifies bestRoots */
for each 1 ≤ i ≤ h

do





for each t ∈ T

do





bestRoots(t, i) ← ∅
for each f ∈ F where ret(f) ∈ sub(t)

do

{
e ← GetBestExplForFunc(f, i− 1)
if e > −∞
then

{
bestRoots(t, i) ← bestRoots(t, i) ∪ (e, f)

/* keep the best r roots */
bestRoots(t, i) ← GetBestN(bestRoots(t, i), r)

procedure GetBestExplForFunc(f, hmax)
ecumulative ← expl(f)
for each p ∈ params(f)

do





ebest ← (−∞, 0, 0, 0, ...)
for each 1 ≤ i ≤ hmax

do

{
for each (e′, f ′) ∈ bestRoots(p, i)

do

{
if ecumulative + e′ > ebest

then
{

ebest ← ecumulative + e′

ecumulative ← ebest

return (ecumulative)

Fig. 4 Pseudocode to fill out the dynamic programming table.

Note that we sort the parameters such that the most specific types appear first (t1
is more specific than t2 if |sub(t1)| < |sub(t2)|). We do this because more specific types

are likely to have fewer options, so the greedy algorithm is better off making a choice

for them first. This idea is best explained with an example: let’s say our query is find

roots, and we are considering a function with parameter types p1 and p2. Let’s also

say that p2 is a very specific type, and the only explanation vector associated with it

explains roots. However, p1 is not very specific, and it has two options: one option

explains find, and the other option explains roots. If we use our greedy algorithm,

and we consider these parameters in order, then we might choose the option for p1 that

explains roots, since both options increase our score by an equal amount. If instead

we consider p2 first, then we would choose the option that explains roots for p2, and

the algorithm would know to choose the option for p1 that explains find, since roots

is already explained.

4.4 Running Time

Assume the user enters n keywords; in a preprocessing step, we spend O(|F |n) time

calculating the explanation vector for each function against the keywords. We can ap-

proximate the running time of the dynamic program in Figure 4 by taking the product

of all the for-loops, including the for-loops in GetBestExplForFunc. If we assume that

every function takes p parameters, then we get O(h|T ||F |phr).

11

procedure ExtractTree(t, h, e)
ebest ← 0
nbest ← null
for each 1 ≤ i ≤ h

do





for each (eignore, f) ∈ bestRoots(t, i)

do





/* create tuple for function tree node */
n ← (f)
en ← e + expl(f)
/* put most specific types first */
P ← Sort(params(f))
for each p ∈ P

do





np, ep ← ExtractTree(p, i− 1, en)
/* add np as a child of n */
n ← append(n, np)
en ← en + ep

if en > ebest

then

{
ebest ← en

nbest ← n
return (nbest, ebest)

Fig. 5 Pseudocode to extract a function tree.

We can do a little better by noting that if we cache the return values of GetBestEx-

plForFunc, then we need to call this function at most |F | times for each row. We can

make all of these calls for a given row, before iterating over the types, in O(|F |phr)

time. This gives us O(h(|F |phr + |T ||F |)) total time.

Next, we observe that the loop over functions for each type only includes functions

which return a subtype of the given type. For a type like java.lang.Object, this is

likely to be all |F | functions, but on average this number is likely to be much less. If

we assume this number averages to f , then we get O(h(|F |phr + |T |f)).

Extracting the best function tree requires an additional O((hrp)h) time, based on

the recursive function in 5, which has a recursive depth of at most h.

In practice, the algorithm is able to generate height-3 function trees in well under a

second with thousands of functions in F , hundreds of types in T , and a dozen keywords.

More detailed information is provided in the evaluation that follows.

5 Evaluations

We conducted two evaluations of the algorithm. The first evaluation used artificially

generated keyword queries from open source Java projects. This evaluation gives a feel

for the accuracy of the algorithm, assuming the user provides only keywords that are

actually present in the desired expression. It also provides a sense for the speed of the

algorithm given models generated from contexts within real Java projects.

The second evaluation looks at the accuracy of the algorithm on human generated

inputs; these inputs were solicited from a web survey, where users were asked to enter

pseudocode or keywords to suggest a missing Java expression.

12

Table 1 Project Statistics

Project Class Files LOC Test Sites
Azureus 2,277 339,628 82,006

Buddi 128 27,503 7,807
CAROL 138 18,343 2,478
Dnsjava 123 17,485 2,900

Jakarta CC 41 10,082 1,806
jEdit 435 124,667 25,875

jMemorize 95 1,4771 2,604
Jmol 281 88,098 44,478

JRuby 427 72,030 19,198
Radeox 179 10,076 1,304

RSSOwl 201 71,097 23,685
Sphinx 268 67,338 13,217

TV-Browser 760 119,518 29,255
Zimbra 1,373 256,472 76,954

6 Artificial Corpus Study

We created a corpus of artificial keyword queries by finding expressions in open source

Java projects, and obfuscating them (removing punctuation and rearranging keywords).

We then passed these keywords to the algorithm, and recorded whether it reconstructed

the original expression. This section describes the results.

6.1 Projects

We selected 14 projects from popular open source web sites, including sourceforge.net,

codehaus.org, and objectweb.org. Projects were selected based on popularity, and our

ability to compile them using Eclipse. Our projects include: Azureus, an implemen-

tation of the BitTorrent protocol; Buddi, a program to manage personal finances and

budgets; CAROL, a library for abstracting away different RMI (Remote Method Invo-

cation) implementations; Dnsjava, a Java implementation of the DNS protocol; Jakarta

Commons Codec, an implementation of common encoders and decoders; jEdit, a config-

urable text editor for programmers; jMemorize, a tool involving simulated flashcards

to help memorize facts; Jmol, a tool for viewing chemical structures in 3D; JRuby,

an implementation of the Ruby programming language in Java; Radeox, an API for

rendering wiki markup; RSSOwl, a newsreader supporting RSS; Sphinx, a speech recog-

nition system; TV-Browser, an extensible TV-guide program; and Zimbra, a set of tools

involving instant messaging.

Table 1 shows how many class files and non-blank lines of code each project con-

tains. The table also reports the number of possible test sites, which are defined in the

next section.

6.2 Tests

Each test is conducted on a method call, variable reference or constructor call. We only

consider expressions of height 3 or less, and we make sure that they involve only the

Java constructs supported by our model. For example, these include local variables and

static fields, but do not include literals or casts. We also exclude expressions inside of

13

Fig. 6 Example Test Site

inner classes since it simplifies our automated testing framework. Finally, we discard

test sites with only one keyword as trivial.

Figure 6 shows a test site in the JRuby project. This example has height 2, because

the call to getRuntime() is nested within the call to newSymbol(). Note that we count

nested expressions as valid test sites as well, e.g., getRuntime() in this example would

be counted as an additional test site.

To perform each test, we obfuscate the expression by removing punctuation, split-

ting camel-case identifiers, and rearranging keywords. We then treat this obfuscated

code as a keyword query, which we pass to the algorithm, along with a model of the con-

text for the expression. If we can algorithmically infer the return type of the expression

based solely on context, then we give the algorithm this information as well.

For example, the method call highlighted in Figure 6 is obfuscated to the following

keyword query: name runtime get symbol symbol ruby new

The testing framework observes the location of this command in an assignment

statement to newArgs[0]. From this, it detects the required return type:

org.jruby.runtime.builtin.IRubyObject

The framework then passes the keyword query and this return type to the algo-

rithm. In this example, the algorithm returns the Java code:

RubySymbol.newSymbol(getRuntime(), name)

We compare this string with the original source code (ignoring whitespace), and

since it matches exactly, we record the test as a success.

We also recorded other information about each test, including the length of the

keyword query, the size of the model that was searched (|T| and |F|), and the total

time spent searching. Measured time did not include the time taken to construct the

model, since in practice the model could be constructed once and reused for many

queries. The test framework was implemented as a plug-in for Eclipse 3.2 with Java 1.6,

and ran on an AMD Athlon X2 (Dual Core) 4200+ with 1.5GB RAM. The algorithm

implementation was single threaded.

6.3 Results

The results presented here were obtained by randomly sampling 500 test sites from

each project (except Zimbra, which is really composed of 3 projects, and we sampled

14

Table 2 Number of test sites by keyword query length.

Keywords Samples
2 3330
3 1997
4 1045
5 634
6 397
7 206
8 167
9 86

10 54
11 38

≥ 12 46

Fig. 7 Accuracy of algorithm, measured by the percentage of keyword queries that correctly
reproduced the original expression, as a function of keyword query length. Error bars show
standard error.

500 from each of them). This gives us 8000 test sites. For each test site, we ran the

procedure described above.

Table 2 shows how many samples we have for different keyword query lengths.

Because we do not have many samples for large lengths, we group all the samples of

length 12 or more when we plot graphs against keyword length.

Figure 7 shows the accuracy of the algorithm given a number of keywords. The

overall accuracy is 91.2%, though this average is heavily weighted to inputs with fewer

keywords, based on the sample sizes shown in Table 2.

Figure 8 shows how long the algorithm spent processing inputs of various lengths.

The average running time is under 500 milliseconds even for large inputs.

Another factor contributing to running time is the size of T and F in the model.

Table 9 shows the average size of T and F for each project. The average size of F

tends to be much larger than T . Figure 10 shows running time as a function of the size

of F . We see that the algorithm takes a little over 1 second when F contains 14,000

functions. We believe that the size of F may explain the dip seen at the end of Figure

8: the average size of F in the model for inputs of 11 keywords was 4255, whereas the

average size of F for inputs of 12 or more keywords was 3778.

We ran another experiment on the same corpus to measure the performance of

the algorithm when given fewer keywords than were found in the actual expression,

15

Fig. 8 Running time as a function of keyword query length. Error bars show standard error.

Fig. 9 Average size of T and F for different projects.

forcing it to infer method calls or variable references without any keyword hint. This

experiment considered only test sites that were nested expressions (i.e. the resulting

function tree had at least two nodes), so that when only one keyword was provided,

the algorithm would have to infer at least one function to construct the tree.

Again, we randomly sampled 500 test sites from each project. At each test site, we

first ran the algorithm with the empty string as input, testing what the algorithm would

produce given only the desired return type. Next, we chose the most unique keyword

in the expression (according to the frequency counts in L), and ran the algorithm on

this. We kept adding the next most unique keyword from the expression to the input,

until all keywords had been added. The left side of Figure 11 shows the number of

keywords we provided as input. The table shows the accuracy for different expression

lengths (measured in keywords).

16

Fig. 10 Time given size of F . Error bars show standard error.

Fig. 11 Accuracy of inference (1 is 100%)

6.4 Discussion

The goal of the artificial corpus study was to establish feasibility: whether keyword

programming could be done at all in Java, or if the search space was simply too big.

The results suggest that the problem is tractable, and that a simple algorithm can

achieve acceptable speed and modest accuracy.

The speed is reasonable for an Eclipse autocomplete-style plug-in; many queries

are resolved in less than 500 milliseconds, provided that the model for the scope of

the query is not to big (under 8000 functions). Note that we didn’t include the time it

takes to build the model in these measurements, since the model can be constructed in

the background, before the user submits a query. Constructing the model from scratch

can take a second or more, but a clever implementation can do better by updating the

model as the user writes new code.

The accuracy on artificial inputs is encouraging enough to try the algorithm on

user generated queries, which we do in the next section.

7 Web User Study

The purpose of this study was to test the robustness of the algorithm on human gen-

erated inputs. Inputs were collected using a web based survey targeted at experienced

Java programmers.

17

7.0.1 Participants

Subjects were solicited from a public mailing list at a college campus, as well as a mail-

ing list directed at the computer science department of the same college. Participants

were told that they would be entered into a drawing for $25, and one participant was

awarded $25.

Sixty-nine people participated in the study, but users who didn’t answer all the

questions, or provided obviously garbage answers such as ”dghdfghdf...”, were removed

from the data. This left 49 participants. Amongst these, the average age was 28.4, with

a standard deviation of 11.3. The youngest user was 18, and the oldest user was 74.

The vast majority of participants were male; only 3 were female, and 1 user declined

to provide a gender. Also, 35 of the users were undergraduate or graduate students,

including 2 postdocs.

Almost all users had been programming in Java for at least 2 years, except one

person who had written a Java program for a class, and one person who had no Java

experience at all, but 20 years of general programming experience.

7.1 Setup

The survey consisted of a series of web forms that users could fill out from any web

browser. Subjects were first asked to fill out a form consisting of demographic infor-

mation, after which they were presented with a set of instructions, and a series of

tasks.

7.1.1 Instructions

Each task repeated the instructions, as shown in Figure 12. Users were meant to as-

sociate the small icon next to the text field with the large icon at the bottom of the

page. Next to the large icon were printed instructions. The instructions asked the user

to infer what the program did at the location of the text field in the code, and to write

an expression describing the proper behavior. The instructions also prohibited users

from looking online for answers.

Different icons represented different variants of the instructions. There were three

variants: Java, pseudocode, and keywords. The Java and pseudocode variants simply

asked the user to “write Java code” or “write pseudocode” respectively. The keywords

variant said “Write keywords that suggest the proper code.” None of the instructions

provided examples of what users should type, in order to obtain naturalistic responses.

Each user saw two instruction variants: either Java and pseudocode, or Java and

keywords.

7.1.2 Tasks

The survey consisted of 15 tasks. Each task consisted of a Java method with an expres-

sion missing, which the user had to fill in using Java syntax, pseudocode, or a keyword

query. The 15 missing expressions are shown in Table 3. Figure 12 shows the context

provided for task 5.

The same 15 tasks were used for each user, but the order of the tasks was ran-

domized. Five of the tasks requested Java syntax, and these five tasks were grouped

18

Fig. 12 Example of a task used in the web user study (task 5 from Table 3). This example
asks the user to enter keywords that suggest the missing expression, but other users were asked
to enter Java code or pseudocode for this task.

Table 3 Missing Expressions for Tasks

task desired expression
1 message.replaceAll(space, comma)
2 new Integer(input)
3 list.remove(list.length() - 1)
4 fruits.contains(food)
5 vowels.indexOf(c)
6 numberNames.put(key, value)
7 Math.abs(x)
8 tokens.add(st.nextToken())
9 message.charAt(i)
10 System.out.println(f.getName())
11 buf.append(s)
12 lines.add(in.readLine())
13 log.println(message)
14 input.toLowerCase()
15 new BufferedReader(new FileReader(filename))

together either at the beginning or the end of the experiment. The remaining ten tasks

requested either pseudocode or keywords.

7.1.3 Evaluation

Each user’s response to each task was recorded, along with the instructions shown to

the user for that task. Recall that if a user omitted any response, or supplied a garbage

answer for any response, then we removed all the responses from that user from the

data.

Tasks 1 and 3 were also removed from the data. Task 1 was removed because it is

inherently ambiguous without taking word order into account, since message, space,

and comma are all of type String. Task 3 was removed because it requires a literal (‘1’),

which was not handled by this version of our algorithm.

The remaining responses were provided as keyword queries to the algorithm in the

context of each task. The model supplied to the algorithm was constructed from a

Java source file containing all 15 tasks as separate methods. The resulting model had

2281 functions and 343 types, plus a few functions to model the local variables in each

task, so it is comparable in complexity to the models used in the artificial corpus study

(Figure 9).

19

Table 4 Query counts and statistics for each instruction type.

Java pseudo keywords
query count 209 216 212
average keywords per query 4.05 4.28 3.90
standard deviation 1.17 1.95 1.62
min/max keyword count 1—8 2—14 1—12
query uses Java syntax 98% 73% 45%

7.2 Results

Table 4 shows the number of queries for each instruction type, along with various

statistics. Many queries used some form of Java syntax, even when the instructions

called for pseudocode or keywords. This is understandable, because the participants

were experienced Java programmers, and the tasks were posed in the context of a Java

method. In Table 4, ”uses Java syntax” means that the query could compile as a Java

expression in some context.

When specifically asked to write Java code, users wrote syntactically and semanti-

cally correct code only 53% of the time, since users were asked not to use documenta-

tion, and most errors resulted from faulty memory of standard Java APIs. For instance,

one user wrote vowels.find(c) instead of vowels.indexOf(c) for task 5, and another

user wrote Integer.abs(x) instead of Math.abs(x) for task 7. Some errors resulted

from faulty syntax, as in new Integer.parseInt(input) for task 2. The number 53%

is used as a baseline benchmark for interpreting the results of the algorithm, since it

gives a feel for how well the users understand the APIs used for the tasks.

Overall, the algorithm translated 59% of the queries to semantically correct Java

code. Note that this statistic includes all the queries, even the queries when the user

was asked to write Java code, since the user could enter syntactically invalid Java code,

which may be corrected by the algorithm.

In fact, the algorithm improved the accuracy of Java queries alone from the baseline

53% to 71%. The accuracies for translating pseudocode and keyword queries were both

53%, which is encouraging, since it suggests that users of this algorithm can obtain the

correct Java code by writing pseudocode or keywords as accurately as they can write

the correct Java code themselves.

A breakdown of the accuracies for each task, and for each instruction type, are

shown in Figure 13.

Tables 5 and 6 show a random sample of queries for each instruction variant that

were translated correctly and incorrectly. The queries were quite varied, though it

should be noted that many queries for pseudocode and keywords were written with

Java style syntax.

8 Eclipse Plug-in

In order to get a feel for how keyword programming might actually be used in practice,

we implemented it as an extension to Eclipse’s autocomplete mechanism, called Quack.1

A few of the items we had planned as future work seemed critical for achieving real-

world usability, so we added these features to the plug-in. These included: returning a

1 “Quack” is a very loose phonetic acronym for “Keyword Command Completion.”

20

Fig. 13 Accuracy of the algorithm for each task, and for each instruction type, along with
standard error. The “Baseline” refers to Java queries treated as Java, without running them
through the algorithm.

Table 5 Examples of queries translated correctly.

instructions input output task
Java Math.abs(x) Math.abs(x) 7

input.toInt() Integer.parseInt(input.toString()) 2
tokens.add(st.nextToken()) tokens.add(st.nextToken()) 8

pseudocode letter at message[i] message.charAt(i) 9
System.out.println(f.name()) System.out.println(f.getName()) 10
input.parseInteger() Integer.parseInt(input) 2

keywords vowels search c vowels.indexOf(c) 5
lines.add(in.readLine()) lines.add(in.readLine()) 12
buf.append(s); buf.append(s) 11

Table 6 Examples of queries translated incorrectly.

instructions input output task
Java return(x>=0?x;-x); x.rotateRight(Integer.SIZE,... 7

tokens.append(st.nextToken()) st.nextToken(tokens.lastElem... 8
buf.add(s) new Vector().add(buf) 11

pseudocode (x < 0) ? -x : x x.rotateLeft(Integer.SIZE,... 7
lines.append (in.getNext()); lines.equals(in.getClass()) 12
input.lowercase(); input 14

keywords Add s to buf s.compareTo(buf.toString()) 11
in readline insert to lines lines.contains(in.toString()) 12
print name of f Integer.valueOf(f.getName()) 10

ranked list of matching expressions instead of just one best-scoring expression; support

for literals, such as numbers and quoted strings; and support for array indexing.

This section describes the changes made to the algorithm, followed by a discussion

of the user interface, and the backend implementation of the plug-in. The following

section presents a field test of the algorithm.

21

8.1 Algorithm Changes

We made three substantial changes to the algorithm: multiple query results, literals,

and array indexing.

8.1.1 Multiple Query Results

Our original system uses a greedy algorithm to extract a function tree from the dynamic

program. Unfortunately, it is unclear how to extend this algorithm to return multiple

results. After trying several techniques, we settled upon using a different algorithm to

extract a function tree from the dynamic program, namely A* search.

The A* algorithm is a heuristic search over a state space for the most valuable goal

state, given a value function. (A* is normally described as minimizing a cost function,

but since we are trying to maximize the score of the function tree, we simply invert the

usual description.) In our case, a state consists of a partially expanded function tree:

some of the tree-nodes are functions, and some of the leaf-nodes are expansion points.

Expansion points are represented by a desired return type, and a maximum height.

Goal states are function trees with no expansion points.

Each state x is assigned a value f(x) which equals the known value g(x), plus h(x),

which represents the possible additional value if all expansion points are expanded.

More specifically, g(x) is the sum of the explanation vectors for all the function tree-

nodes, and h(x) is the sum of the maximal explanation vectors for all the expansion

points. In this case, a “maximal explanation vector” for an expansion point with de-

sired type t and maximum height i is obtained by creating an explanation vector

e0, ..., en where ej is the max over the ej ’s for all the explanation vectors found in each

bestRoots(t, i′) where 1 ≤ i′ ≤ i.

Note that the heuristic we use for h(x) always overestimates the value of an ex-

pansion point. In terms of A*, this is an admissible heuristic, which makes this use

of A* optimal for extracting a function tree from the dynamic program. However, the

dynamic program may not hold the optimal function tree (since we only keep r func-

tions in each cell), so the algorithm as a whole is not optimal. The running time for

this algorithm also depends on the keyword query and the model, but empirical tests

show that it is comparable to the greedy algorithm.

In the plug-in, we run A* until we have obtained three complete function trees,

or until we have processed 2000 elements of the priority queue. These three function

trees are presented to the user as a list of query results. These numbers are arbitrary,

and were chosen more because we expected that users would not want to look through

more than 3 items, and not because the algorithm was not fast enough to produce

more results.

8.1.2 Literals

The solution for supporting literals was far less drastic. We essentially added a new

type of function to the model which had a regular expression as a label. For instance,

integer literals were represented with the function (int, ([-+]?[0-9]+)).

Note that care had to be taken in our keyword query parser so that an input like

abs -7.2e2 would be tokenized into the keywords abs, and -7.2e2, as opposed to abs,

7, 2, e, 2. We also needed to pay special attention to handle cases where the keyword

query included Java style punctuation, as in Door5.open(). In this case, we want the

22

keywords door, 5 and open, and we specifically do not want the dot ‘.’ to be absorbed

into the 5 to yield the keyword “5.”.

Recall from the discussion of explanation vectors in section 4.1 that a function

(int, ([-+]?+.)) for the keyword query add 333 777 will have the explanation vector:

(e0, 0add, 0.5333, 0.5777)

Unfortunately, when it comes time to render the function tree as Java code, this does

not tell us whether we should render a specific invocation of the function as 333 or 777.

To deal with this, we render the left-most literal function, with the left-most literal

token (of the appropriate type) in the keyword query, and we render the next left-most

literal function with the next left-most literal token, etc.

Note that this implementation requires users to explicitly delimit quoted strings.

Previous keyword programming implementations such as Chickenfoot and Koala sup-

ported unquoted strings, but handled them as special cases. We believe strings may

also need to be handled as a special case in this system, but this is left for future work.

8.1.3 Array Indexing

Our solution for array indexing was also pretty straightforward; for every array type

in T , e.g. Object[], we added a function to F of the form (Object, (), Object[],

int). Note that the label is blank, so this function can only be inferred to satisfy type

constraints. A more appropriate choice may have been the label ([]); however, this

would also require adjusting the query parser to treat [and] as keywords, as opposed

to ignoring these characters as punctuation.

8.2 User Interface

Figure 14 shows a typical use of the plug-in. The user begins by entering a keyword

query at the location they would like a Java expression to appear. In this example, they

enter the keywords add line. Next, the user invokes Eclipse’s autocomplete mechanism,

which is usually mapped to Ctrl-Space. This brings up a popup menu with alternatives

for completing the current query. Quack labels its results in the menu to distinguish

them from items generated by the existing autocomplete mechanism, which may also

be found in the menu. Pressing Enter selects the top item in the list, in this case

replacing the keyword query with the expression array.add(src.readLine()).

Although the illustration shows the keyword query on a blank line, the query may

also be entered inside a larger expression. To find the start of the keyword query,

the plug-in considers the text on the current line preceding the cursor, and finds the

longest suffix that contains only keyword tokens. Tokens include literals like 5.0, but

not punctuation like the dot separating an object from a method call in out.print().

We also make a special case for “return x” and “throw x”, since Java syntax does not

require any punctuation between these words and the expression x. Since our algorithm

does not generate return or throw statements itself, we do not allow the query to begin

with either of these words.

As an example of finding the keyword query, consider the following line:

v.add(f name|)

23

Fig. 14 An illustration of the use of the Quack Eclipse Plug-in.

The | represents the cursor location where the user presses Ctrl-Space. In this case,

the longest suffix preceding the cursor is f name. The next longest suffix is ‘(f name’,

which is rejected because the ‘(’ is not a valid keyword query token.

If the keyword query is a single keyword, we treat this as a special case. Consider

the following example:

v.add(f.getNam|
When the user invokes autocomplete, the Quack plug-in will find the keyword query

getNam, since it is the longest valid suffix preceding the cursor. However, Nam is

not complete keyword in the desired function, so Quack will fail to find the correct

function. One way to fix this would be to make Quack support prefix matching of

function names, but for now, we prevent the plug-in from making suggestions in this

case. We feel this is a good idea in early stages of the prototype anyway, since it

prevents Quack from being invoked in many of the cases where the user would expect

Eclipse’s native autocomplete to function. Whereas, if the user enters a query like f

24

name, then Eclipse’s native autocomplete is unlikely to yield any results, since f name

is syntactically invalid.

If the user wants to enter a query consisting of a single keyword, they must enter

a space after the query, as in:

v.add(name |
One problem with this approach is that it suggests to the user that they could use

Quack to complete the latter part of an expression with a receiver object; for instance,

if they typed:

v.add |
In this case, the keyword query is add, but the plug-in does not know about the implicit

parameter v which needs to be passed to add. Supporting this is future work.

As a fallback mechanism, the user may select the entire query, and then invoke

Control-Space. If the Quack plug-in sees that the user has selected some text, then it

will always assume it is a keyword query. This maintains a separation with Eclipse’s

native autocomplete, since users generally do not select text before invoking native

autocomplete.

8.3 Backend

When the user invokes Quack, the plug-in finds the keyword query as described in

the previous section, and then obtains the remaining parameters needed for the search

algorithm: the model and the desired return type, if any. This section describes how

these parameters are obtained.

8.3.1 Creating the Model

First, the plug-in creates a model M based on all the classes which are visible in the

current source file. A class is visible if there are any identifiers bound to it, or any

method calls which return it. The plug-in also recursively processes classes which are

returned by methods in the classes it has found so far, up to a certain depth, which is

determined by the height of the dynamic program used by the algorithm, see section

4.

The plug-in keeps track of the model used by the most recent completion, and reuses

this model if the user invokes Quack again in the same Java source file. Other options

might be caching model information for each package, or even the entire project. The

issue here is that different functions are visible to different classes, and we did not

engineer a way of storing this information in the model. This is a possibility for future

work.

8.3.2 Add Local Variables and Member Fields and Methods

In the previous step, the plug-in builds a model for the Java functions visible from the

current source file, but it needs to do another pass to find the local variables, member

fields and methods that are visible from the particular scope of the keyword query.

This information is not cached, since it is not the same for every location within the

same source file.

25

8.3.3 Determine Return Type

Next, the plug-in tries to determine what Java types are valid for an expression at the

location of the keyword query. In the example from Figure 14, the keyword query is on

a blank line, and so any return type is valid. This is represented by making the desired

return type void, which we implement as a super type for all other types.

When the keyword query appears inside a larger expression or statement, the plug-

in may be able to infer more about the return type. Consider:

String a = f name|

When the user invokes autocomplete in this case, the Quack plug-in uses f name as

the keyword query, and infers a return type of java.lang.String, since the keyword

query is sitting on the right-hand-side of an assignment to a String.

8.3.4 Generate Results

Finally, the plug-in uses the keyword query, model and desired return type, and invokes

the algorithm. The algorithm returns up to three function trees, in rank order, rendered

as Java expressions. These expressions are added to the autocomplete menu, with their

relevance value set so that they always appear at the very top.

9 Preliminary Field Study

In order to get a feel for the usefulness and accuracy of Quack in realworld programming

scenarios, we conducted a preliminary field study, giving the plug-in to three developers

in our research lab (two PhD students, and one postdoc). All three were working on

Java projects for their research, and agreed to use the plugin regularly for a week. They

were each paid $50 for their time.

We trained each participant for about 30 minutes at the beginning of the study. We

also interviewed each participant at the end of the study. See section 10 for a discussion

of these interviews.

The plug-in recorded statistics about the use of the plug-in by each participant.

Whenever the user invoked autocomplete on a keyword query, the plug-in recorded

the keyword query, along with the expressions that were displayed to the user. If the

user selected one of the proposed expressions, the plug-in recorded which option they

selected. Note that users might select an item from the list, even if it was not quite

what they wanted (one user specifically reported doing so). The plug-in did not record

enough information to determine whether the user kept the completion they selected.

9.1 Quantitative Results

Quack recorded 160 keyword query log entries for all the users. We manually grouped

these into 90 sessions, where each session involved one or more queries aimed at gener-

ating a particular expression in a particular location in the code. An example session

is shown in Figure 15. In this session, the user began by entering the keyword query

names put, and invoking Quack. However, the results did not contain the desired

26

excerpt from log query: names puts

result: namesToValues.putAll(namesToValues)
result: new Properties().putAll(namesToValues)
result: System.getProperties().putAll(namesToValues)

query: names put variable vt

result: namesToValues.put(variableName, vt)
result: equals(namesToValues.put(variableName, vt))
result: namesToValues.put(variableName, vt).vals

selected: namesToValues.put(variableName, vt)

Fig. 15 One session of keyword query invocations taken from the field study. The user selected
nothing on the first attempt, altered their query, and then selected the top result.

Table 7 Session counts for each user; the number in parentheses is the average number of
queries for each session.

User A User B User C
Ended with Selection 10 (1.3) 23 (1.5) 17 (1.25*)

Ended with No Selection 6 (1.3) 11 (1.3) 12 (3.4)
Error 1 (4) 1 (1) 0

Method Declaration 0 1 (1) 2 (1)
Constructor Completion 0 5 (1.2) 1 (3)

* Excludes an outlier where the user tried 11 times before succeeding.

expression, so they added the keywords variable and vt to their query, and invoked

Quack again. This time, the user selected the top result returned by Quack.

Sessions were classified by whether the user eventually selected a result from Quack,

except for a few special cases. These exceptions were cases where the plug-in either

had an error, or where the user probably did not intend to invoke Quack (note that

Quack is tied to Eclipse’s autocomplete system, so the user may have been intending

to use some other feature of autocomplete). These error classes are enumerated below:

1. Error: Sessions in which the plug-in threw an exception, and therefore didn’t display

any results.

2. Method Declaration: Session where the user entered keywords that appear to be

part of a method declaration, like public static void createPC. Quack does not

support method declarations, and the plug-in query detector should filter these

cases, but didn’t due to a bug.

3. Constructor Completion: Session where the user appears to have entered a prefix

to a constructor call, as in new Wek. In these cases, the user probably intended to

call upon Eclipse’s regular autocomplete to complete the name of the class, rather

than Quack.

Table 7 shows the number of sessions invoked by each user, grouped into the cat-

egories above. If we ignore the special error classes, then selection rates ranged from

58% to 68%. Most selections were obtained on the first invocation of Quack.

To put these selection rates in perspective, it is useful to consider how many key-

words each user provided compared to the number of keywords in the expressions they

selected. These numbers are provided in table 8.

We can see an interesting difference in the usage pattern of user A compared with

the usage pattern of users B and C. User A tended to provide more keywords, and

27

Table 8 Keyword counts for queries where the user selected one of the results, along with the
number of keywords in the results.

User A User B User C
Average number of keywords in query 3.5 2.3 2.6
Average number of keywords in result 4.2 4.8 5.1

seemed to generate shorter expressions. In fact, this user would sometimes provide all

the keywords, and essentially use Quack to fill in the punctuation. For example, they

converted system out println into System.out.println(). Sometimes they would

use all the keywords, but in a different order, as in: a1 getCond takeDiscreteFacts

to get takeDiscreteFacts(a1.getCond()).

On the other hand, both users B and C tended to use Quack to infer a large

expression from a small number of keywords. For instance, converting DOCUMENTS

into ChronKB.CHRON ONT DOCUMENTS. These usage patterns and others are discussed in

more detail in the next section.

10 Discussion

This section discusses some of the advantages and limitations of the keyword program-

ming technique, based on the user studies described earlier as well as the authors’

personal experience using the plug-in. We identify some common usage patterns from

empirical observation, and we suggest some potential improvements to the algorithm

based on common modes of failure.

10.1 Type Constraints

One field study user said that the plug-in tended to work well in cases where there

was a lot of context type information; for instance, when completing a keyword query

which was an argument to a method. In this case, the plug-in could often infer the

return type based on the method signature.

Another user mentioned that the plug-in was useful in cases where they had forgot-

ten a method name completely, and the plug-in had some chance of reminding them

of the name given other constraints, like arguments to the method.

The third user mentioned that the plug-in worked well in smaller classes, presum-

ably because there was less ambiguity.

10.2 Learning Shortcuts

Similar to how Eclipse allows users to type sysout and then Control-Space to pro-

duce System.out.println(), Quack effectively supports a variety of shortcuts for

other common commands. One idiom we commonly use is exit 0, which produces

System.exit(0). It is also possible to type out “hello” to produce System.out.-

println("hello"); one user used this idiom a couple of times.

28

10.3 Using Unique Keywords

When searching the Web for a particular page, it’s often useful to think of an unusual

keyword that’s likely to appear on the target page. The same technique works in Quack.

An example is the word millis, which is likely to produce System.currentTimeMillis(),

since the word millis is so unlikely to appear in any other function. An example of this

pattern from the user study is the conversion of Address statistics into Pointer-

AddressRanges.AddressInfo.dumpStatistics().

10.4 Avoiding Punctuation and Capitalization

Another common use case is simply typing a simple expression without punctuation,

and letting Quack fill in the punctuation. A simple example from the field study is

converting it2 next into it2.next(). We mentioned before that this was a common

idiom for one of the field study participants. They would even go one step further, let-

ting Quack combine keywords into camel-case identifiers, as exemplified by converting

flVector element at j into flVector.elementAt(j).

10.5 Unfamiliar APIs

Turning now to limitations, one field study user was doing work on an unfamiliar API,

and they found that the plug-in was less useful in this setting. They found that they

could not come up with keywords, since they did not know which functions to call.

Some of the confusion stems from synonyms like “put” versus “add”, but some of the

confusion stems from not understanding the model for how the API works.

One of the goals of keyword programming is to manage large APIs, even unfamiliar

ones. An important area of future work will be to determine whether the accuracy of

the current system is too low, or whether there is a fundamental reason why keyword

programming will not work on unfamiliar APIs.

10.6 Misdetected Queries

Field study users reported that the mechanism for determining the start and end of

the keyword query was sometimes confusing. One user specifically mentioned: “I forget

all the symbols at the start or end that Quack looks at”. They provided the example

of entering a query which included set<string>, and Quack would only consider the

part of the query after the ‘>’.

A related problem has to do with how a keyword query is repaired. For instance,

after viewing Quack’s suggestions, a user may notice an error in the beginning of their

keyword query. Unfortunately, after they repair this error, they must remember to

bring their cursor back to the end of the entire query before invoking Quack again.

Errors of both sorts may be mitigated by having the user invoke Quack before

entering their expression, and there may be other reasons for this as well, discussed

below.

29

10.7 Understanding What Went Wrong

When Quack did not suggest the desired expression, it could be difficult to understand

why. One reason Quack may not work is that a desired method call is a member of

an unimported class. Another more subtle reason mentioned by a user is that certain

fields may be invisible from the current scope, and the user doesn’t realize that they

are invisible. One common example of this is trying to access a non-static field from a

static method.

These issues are problems with Eclipse’s own autocomplete mechanism as well, but

they are more difficult in Quack, because the user enters an entire query before they

get feedback saying it doesn’t work. Autocomplete tends to work one token at a time,

so the user knows exactly which token Eclipse is having trouble finding.

A third source of errors comes from misspelled keywords. These can be difficult to

detect amidst other sources of errors, though this particular problem is probably best

addressed by adding spell correction to the system, which we discuss below.

10.8 Recognizing the Right Expression

One user reported a bad experience when Quack suggested something that was close to

correct, but wasn’t quite correct. They selected the option, not realizing that it was the

wrong choice. This can happen with regular autocomplete as well, but the problem is

aggravated in Quack for a couple of reasons. First, the user needs to recognize an entire

expression, which can be difficult if the API is unfamiliar. Second, the user interface

does not provide any documentation for the functions involved in the expression. Such

documentation could be displayed in a popup next to the list of suggestions, as is

already done for Eclipse’s autocomplete suggestions.

10.9 Continuous Feedback

Another user suggested a more drastic change to the interface involving continuous

feedback, and the ability to confirm certain hypotheses made by the system. For in-

stance, the system might report that a likely binding for a particular keyword is to

a particular local variable, and if the user could confirm this, then it may reduce the

search space.

The combination of invoking Quack before entering a keyword query, and supplying

continuous feedback, is an appealing direction to explore in future work.

10.10 A Priori Weights for Keywords

In the web user study, the algorithm incorrectly translated print name of f to

Integer.valueOf(f.getName()). (The correct expression should have been System.-

out.println(f.getName()).) Since the algorithm could not find an expression that

explained all the keywords, it settled for explaining name, of, and f, and leaving

print unexplained. However, print is clearly more important to explain than of.

One possible solution to this problem is to give a priori weight to each word in an

expression. This weight could be inversely proportional to the frequency of each word

in a corpus. It may also be sufficient to give stop words like of, the, and to less weight.

30

10.11 A Priori Weights for Functions

The query println f name in task 10 of the web user study was translated to System.-

err.println(f.getName()). A better translation for this task would be System.out.-

println(f.getName()), but the algorithm currently has no reason to choose System.-

out over System.err. One way to fix this would be to have a priori function weights.

These weights could also be derived from usage frequencies over a corpus.

Of course, these function weights would need to be carefully balanced against the

cost of inferring a function. For instance, the input print f.name in task 10 was

translated to new PrintWriter(f.getName()), which explains all the keywords, and

doesn’t need to infer any functions. In order for the algorithm to choose System.out.-

print(f.getName()), the cost of inferring System.out, plus the weight of print as an

explanation for the keyword print would need to exceed the weight of new PrintWriter

as an explanation for print.

10.12 Spell Correction

A user in the field study mentioned the need for spell correction. This problem could

also be seen in the web user study. Many users included lowercase in their queries

for task 14. Unfortunately, the algorithm does not see a token break between lower

and case, and so it does not match these tokens with the same words in the desired

function toLowerCase. One solution to this problem may be to provide spell correction,

similar to [5]. That is, a spell corrector would contain toLowerCase as a word in its

dictionary, and hopefully lowercase would be corrected to toLowerCase.

10.13 Synonyms

Another frequent problem involved users typing synonyms for function names, rather

than the actual function names. For instance, many users entered append instead of

add for task 8 of the web user study, e.g., tokens.append(st.nextToken()). This is

not surprising for programmers who use a variety of different languages and APIs, in

which similar functions are described by synonymous (but not identical) names.

An obvious thing to try would be adding append to the label of the function add,

or more generally, adding a list of synonyms to the label of each function. To get a feel

for how well this would work, we ran an experiment in which each function’s label was

expanded with all possible synonyms found in WordNet [1]. This improved some of the

translations, but at the same time introduced ambiguities in other translations.

An example of where the synonyms helped was in translating inputs like to-

kens.append(st.nextToken) for task 8, into tokens.add(st.nextToken()). An ex-

ample of where the synonyms caused problems was task 6, where the input number-

Names.put(key,value) was translated erroneously as String.valueOf(numberNames.-

keySet()). The reason for this translation is that put is a synonym of set in Word-

Net, and so the single function keySet explains both the keywords put and key.

Also note that the algorithm uses a heuristic which prefers fewer function calls, and

since String.valueOf(numberNames.keySet()) has only three function calls (where

String.valueOf is a single static function), this interpretation is favored over number-

Names.put(key, value) which has four function calls.

31

Overall, the accuracy decreased slightly from 59% to 58%. It may be more effective

to create a customized thesaurus for keyword programming, perhaps by mining the

documentation of programming languages and APIs for the words that programmers

actually use to talk about them, but this remains future work.

In general, it is difficult to anticipate the repercussions of changing the heuristics in

the algorithm. Developing a principled manner for adjusting these heuristics is another

important area for future work.

11 Future Work

The previous section discussed a number of areas for future work in the user interface

and underlying algorithm. Another ripe area for improvement lies in the model, and

what Java expressions it can represent.

11.1 Model Extensions

Our current model of Java is fairly limited. We expanded it slightly in the Eclipse Plug-

in (section 8) to include literals as well as array indexing. One user from the field study

specifically called for the plug-in to generate Java statements that it currently doesn’t

support. In this section, we describe some of the extensions that we believe would be

useful, with some thoughts about how they could be represented in the current system,

or how the system could be expanded to support them.

11.1.1 Operators

Java operators can map to functions in the natural manner, but we require multiple

versions of them to support all the primitive types that use them. For example, we

require (int, (+), int, int) separate from (long, (+), long, long). It might seem like

we could just have (double, (+), double, double), since all the other numeric primitives

are subtypes of double. However, this wouldn’t allow us to add two numbers, and pass

the result to a function that requires an int.

11.1.2 Assignment

One user proposed enhancing Quack to support variable declaration statements by

typing something like vector of fact v, and having Quack generate Vector<Fact> v =

new Vector<Fact>(). Assignment is more complicated than other operators, however.

Say we want to allow the assignment x = y, where x is an int and y is a short. We

could add (int, (=), int, int). Unfortunately, this doesn’t prevent us from passing

subtypes of int to the left-hand side of the assignment, so this wouldn’t prevent y =

x. It also wouldn’t prevent 5 = x.

One approach we experimented with is adding a special set-function for each vari-

able. In this example, we would add (int, (x =), int). Note that the function name

includes the = symbol. This seems to work, but it does require adding lots of new

functions.

A cleaner solution might involve adding more types; in particular, an “assignable”

or “reference” type. So the variable int x would be accessible with the function

32

(ref:int, (x)). Then we would have a function for integer assignment: (int, (=),

ref:int, int). We would also make ref:int a subtype of int, so that we could still

use x on the right-hand-side of an assignment. This technique still requires an assign-

ment function for each type, but not for each variable.

11.1.3 Other

A general keyword programming system should include the full range of Java con-

structs, including control flow statements and class declarations. One possible paradigm

would use line-by-line completions of these constructs. For instance, if the user entered

the keywords if x == y, the system might suggest “if (x == y) {”, or create a

template of an if statement with x == y filled in. The function for if would then look

like (void, (if), boolean). Note that this function is not a function in the traditional

sense of a callable procedure; rather, it is a function that generates code for the user to

further edit. This is fine for our system since it is a code completer, and not an actual

interpreter.

12 Related Work

This work builds on our earlier efforts to use keywords for scripting – i.e., where each

command in a script program is represented by a set of keywords. This approach was

used in Chickenfoot [5] and Koala [4]. The algorithms used in those systems were also

capable of translating a sequence of keywords into function calls over some API, but

the APIs used were very small, on the order of 20 functions. Koala’s algorithm actually

enumerates all the possible function trees, and then matches them to the entire input

sequence (as opposed to the method used in Chickenfoot, which tries to build trees out

of the input sequence). This naive approach only works when the number of possible

function trees is extremely small, which was true for Chickenfoot and Koala because

they operate on web pages. Compared to Chickenfoot and Koala, the novel contribution

of the current paper is the application of this technique to Java, a general purpose

programming language with many more possible functions, making the algorithmic

problem more difficult.

This work is also related to work on searching for examples in a large corpus of

existing code. This work can be distinguished by the kind of query provided by the

user. For example, Prospector [6] takes two Java types as input, and returns snippets

of code that convert from one type to the other. Prospector is most useful when the

creation of a particular type from another type is non-obvious (i.e. you can’t simply

pass it to the constructor, and other initialization steps may be involved). Another

system, XSnippet [9], retrieves snippets based on context, e.g., all the available types

from local variables. However, the query result is still a snippet of code that achieves a

given type, and the intent is still for large systems where the creation of certain types

is nontrivial. A third approach, automatic method completion [2], uses a partially-

implemented method body to search for snippets of code that could complete that

method body.

The key differences between our approach and these other systems are:

1. The user’s input is not restricted to a type, although it is constrained by types

available in the local context. Also, the output code may be arbitrary, not just

33

code to obtain an object of a certain type. For instance, you could use a keyword

query to enter code on a blank line, where there is no restriction on the return

type.

2. Our approach uses a guided search based on keywords provided by the user. These

keywords can match methods, variables and fields that may be used in the expres-

sion.

3. Our approach generates new code, and does not require a corpus of existing code to

mine for snippets. In particular, users could benefit from our system in very small

projects that they are just starting.

There is also substantial work on searching for reusable code in software repositories

using various kinds of queries provided by the user. Both [8] and [13] explore the

use of method type signatures as a query mechanism, including the idea of matching

relaxed (inexact) versions of method signatures. The use of formal specifications as a

search query is explored in [3] and [14], including matching behavioral subtypes of a

specification in [14]. A faceted classification scheme for component retrieval is proposed

in [7]. This approach requires meta-data about components and functions, but this

information may be useful in our algorithm as well, particularly a list of synonyms

for function names. Other work in the area of software reuse includes a hybrid query

system which takes advantage of various other approaches [10], and systems which

actively search for reusable code as the programmer is working, rather than requiring

the user to explicitly invoke a query [11,12]. These systems are aimed at the problem

of identifying and selecting components to reuse to solve a programming problem. Our

system, on the other hand, is aimed at the coding task itself, and seeks to streamline

the generation of correct code that uses already-selected components.

13 Conclusion

We have presented a novel technique for keyword programming in Java, where the user

provides a keyword query and the system generates type-correct code that matches

those keywords. We presented a model for the space over which the keyword search

is done, and gave an efficient search algorithm. Using example queries automatically

generated from a corpus of open-source software, we found that the type constraints of

Java ensure that a small number of keywords is often sufficient to generate the correct

method calls.

We also solicited keyword queries from users in a web based survey, and found that

the algorithm could translate keyword queries with the same accuracy as users could

write unassisted Java code themselves. We also identified several classes of errors made

by the algorithm, and suggested possible improvements.

Finally, we created a user interface for the algorithm in the form of an plug-in that

extends the autocomplete feature of Eclipse. In creating this plug-in, we explored a

couple of extensions to the algorithm, and we conducted a field test of its usefulness

in practice.

The long-term goal for this work is to simplify the usability barriers of program-

ming, such as forming the correct syntax and naming code elements precisely. Reducing

these barriers will allow novice programmers to learn more easily, experts to transition

between different languages and different APIs more adroitly, and all programmers to

write code more productively.

34

Acknowledgements This work was supported in part by the National Science Foundation
under award number IIS-0447800, and by Quanta Computer as part of the TParty project.
Any opinions, findings, conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the sponsors.

References

1. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. Bradford Books, 1998.
2. R. Hill and J. Rideout. Automatic Method Completion. Proceedings of Automated Software

Engineering (ASE 2004), pp. 228–235.
3. J.-J. Jeng and B. H. C. Cheng. Specification Matching for Software Reuse: A Foundation.

In Proceedings of the 1995 Symposium on Software reusability, pp. 97–105, 1995.
4. G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E. Kandogan. Koala: Capture,

Share, Automate, Personalize Business Processes on the Web. Proceedings of CHI 2007, to
appear.

5. G. Little and R. C. Miller. Translating Keyword Commands into Executable Code. Pro-
ceedings of User Interface Software & Technology (UIST 2006), pp. 135–144.

6. D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid Mining: Helping to Navigate the
API Jungle. Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pp. 48–61.

7. R. Prieto-Diaz and P. Freeman. Classifying Software for Reusability. IEEE Software, 4(1):6–
16, 1987.

8. M. Rittri. Retrieving library identifiers via equational matching of types. Proceedings of the
tenth international conference on Automated deduction, pp. 603–617, 1990.

9. N. Sahavechaphan and K. Claypool. XSnippet: Mining For Sample Code. Proceedings of
the 21st annual ACM SIGPLAN conference on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA 2006), pp. 413–430.

10. N. Tansalarak and K. T. Claypool. Finding a Needle in the Haystack: A Technique for
Ranking Matches between Components. In Proceedings of the 8th International SIGSOFT
Symposium on Component-based Software Engineering (CBSE 2005): Software Components
at Work, May 2005.

11. Y. Ye, G. Fischer, and B. Reeves. Integrating active information delivery and reuse repos-
itory systems. In International Symposium on Foundations of Software Engineering, pp.
60–68, November 2000.

12. Y. Ye and G. Fischer. Supporting reuse by delivering task-relevant and personalized in-
formation. In Proceedings of the 24th International Conference on Software Engineering
(ICSE-02), pp. 513–523, May 2002.

13. A. M. Zaremski and J. M. Wing. Signature matching: a tool for using software libraries.
ACM Transactions on Software Engineering and Methodology, 4(2):146–170, April 1995.

14. A. M. Zaremski and J. M. Wing. Specification matching of software components. ACM
Transactions on Software Engineering and Methodology, 6(4):333–369, October 1997.

